Microlocal Analysis

Terminal Examination - the 10/12/2021 (2h)

Documents are not allowed

Problem 1. Let p be a prime number. We denote by \mathbb{F}_{p} the prime field of order p which may be constructed as the integers modulo p , that is $\mathbb{F}_{p} \equiv \mathbb{Z} /(p \mathbb{Z})$. Let \mathbf{H} be a complex Hilbert space of finite dimension $d \in \mathbb{N}_{*}$. We consider two unitary operators $A: \mathbf{H} \rightarrow \mathbf{H}$ and $B: \mathbf{H} \rightarrow \mathbf{H}$ satisfying $A^{p}=I d$ and $B^{p}=I d$, as well as

$$
\forall(l, m) \in \mathbb{N}^{2}, \quad A^{l} B^{m}=e^{-2 \pi i l m / p} B^{m} A^{l} .
$$

We suppose that the only subspaces of \mathbf{H} invariant under both A and B are $\{0\}$ and \mathbf{H}.

1. Explain why A has at least one eigenvalue $\lambda \in \mathbb{C}$. Show that λ is of modulus 1 .
2. Let $0 \neq v \equiv B^{0} v \in \mathbf{H}$ be an eigenvector of A of norm 1 that is associated with λ. Show that $B^{k} v$ is for all $k \in \mathbb{N}$ an eigenvector for A. What is the corresponding eigenvalue?
3. What can be said about the stability (under the action of A and B) of the (vector) subspace $E \subset \mathbf{H}$ which is generated by the family of vectors $\left\{B^{k} v\right\}_{k \in \mathbb{N}}$?
4. What can be deduced from these observations about the inclusion $E \subset \mathbf{H}$?
5. Explain why the vectors $B^{k} v$ with $0 \leq k \leq p-1$ form an orthonormal basis of \mathbf{H} built with eigenvectors of A. What is the dimension of \mathbf{H} (in terms of p)?
6. We consider the eigenspace $E_{\lambda}:=\{f \in \mathbf{H} ; A f=\lambda f\}$.
6.1. Prove that E_{λ} is of dimension 1. Indication. You can work by contradiction. Let \tilde{v} and v be two non trivial eigenvectors of A with \tilde{v} not colinear to v. Use question 5 to decompose \tilde{v} as a sum of $B^{k} v$ and then conclude.
6.2. Explain why $\lambda=1$ is sure to be an eigenvalue of A.
7. The Hilbert space $L^{2}\left(\mathbb{F}_{p}\right)$ is provided with the counting measure on \mathbb{F}_{p} which means that, given $f \in L^{2}\left(\mathbb{F}_{p}\right)$ and $g \in L^{2}\left(\mathbb{F}_{p}\right)$, we work with the inner product

$$
\langle f, g\rangle:=\sum_{n=0}^{p-1} f(n) \bar{g}(n) .
$$

7.1. Prove that the modulation operator $U: L^{2}\left(\mathbb{F}_{p}\right) \longrightarrow L^{2}\left(\mathbb{F}_{p}\right)$ and the translation operator $V: L^{2}\left(\mathbb{F}_{p}\right) \longrightarrow L^{2}\left(\mathbb{F}_{p}\right)$ which are given by

$$
\begin{array}{rlrl}
U(f): \mathbb{F}_{p} & \longrightarrow \mathbb{C} & V(f): \mathbb{F}_{p} & \longrightarrow \mathbb{C} \\
n & \longmapsto e^{-2 \pi i n / p} f(n), & n & \longmapsto f(n-1),
\end{array}
$$

are unitary operators on $L^{2}\left(\mathbb{F}_{p}\right)$.
\Longrightarrow T.S.V.P.
7.2. Verify that we have $U^{p}=I d$ and $V^{p}=I d$, as well as

$$
\forall(l, m) \in \mathbb{N}_{*}^{2}, \quad U^{l} V^{m}=e^{-2 \pi i l m / p} V^{m} U^{l}
$$

7.3. We consider the (finite) family of Dirac functions $\left\{\delta_{\ell}\right\}_{\ell} \in L^{2}\left(\mathbb{F}_{p}\right)^{\mathbb{F}_{p}}$ given by

$$
\mathbb{F}_{p} \ni n \longmapsto \delta_{\ell}(n):=\left\{\begin{array}{lll}
1 & \text { if } & n=\ell, \\
0 & \text { if } & n \neq \ell,
\end{array} \quad \ell \in \mathbb{F}_{p}\right.
$$

7.3.a. What can be said about the family of vectors δ_{ℓ} with $\ell \in \mathbb{F}_{p}$?
7.3.b. What can be said about the action of U on the δ_{ℓ} ?
7.4. Use the preceding question 7.3 (that is look at the δ_{ℓ}) to exhibit a self-adjoint operator R on $L^{2}\left(\mathbb{F}_{p}\right)$ which is such that $e^{-2 \pi i R / p}=U$.
7.5. Compute the mean value of R along δ_{ℓ}, that is the quantity $\left\langle\delta_{\ell}, R \delta_{\ell}\right\rangle$.
7.6. What could be a possible interpretation of R ?
7.7. We consider the (finite) family of functions $\left\{g_{\ell}\right\}_{\ell} \in L^{2}\left(\mathbb{F}_{p}\right)^{\mathbb{F}_{p}}$ given by

$$
\mathbb{F}_{p} \ni n \longmapsto g_{\ell}(n):=\frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2 \pi i \ell k / p} \delta_{k}(n), \quad \ell \in \mathbb{F}_{p}
$$

7.7.a. What can be said about the action of V on the g_{ℓ} ?
7.7.b. Show that the vectors g_{ℓ} with $\ell \in \mathbb{F}_{p}$ form an orthonormal basis of $L^{2}\left(\mathbb{F}_{p}\right)$.
7.8. Using the family of functions $\left\{g_{\ell}\right\}_{\ell} \in L^{2}\left(\mathbb{F}_{p}\right)^{\mathbb{F}_{p}}$, determine a self-adjoint operator S on $L^{2}\left(\mathbb{F}_{p}\right)$ which is such that $e^{2 \pi i S / p}=V$.
7.9. Do the operators R and S commute ? Justify the answer (for instance by looking at the consequences on U and $V)$.
8. Let v be an eigenvector of A of norm 1 that is associated with the eigenvalue $\lambda=1$ (such v does exist in view of question 6.2).
8.1. Explain why the p relations $W\left(B^{\ell} v\right)=\delta_{\ell}$ with $\ell \in \mathbb{F}_{p}$ allow to define some unitary surjective map W from \mathbf{H} onto $L^{2}\left(\mathbb{F}_{p}\right)$.
8.2. Prove that $W A W^{-1}=U$ and $W B W^{-1}=V$. What is the name of the theorem which is associated with this relation.

Problem 2. Let $\chi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ be a smooth compactly supported function with $\chi \equiv 1$ in a neighbourhood of the position $\xi=0$. Consider the symbol

$$
K(\xi):=i|\xi|(1-\chi(\xi)), \quad|\xi|:=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2}, \quad \xi \in \mathbb{R}^{n}
$$

1. Explain why the function $\xi \longmapsto K(\xi)$ is a symbol in the class $S^{1}\left(\mathbb{R}^{n}\right)$.
2. Let $K(D)$ be the pseudo-differential operator associated to the symbol K, that is

$$
[K(D) u](x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} K(\xi) \hat{u}(\xi) d \xi
$$

2.1. We select some function u in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$. Prove that $K(D) u$ is a bounded function. What more needs to be said about $K(D) u$?
2.2. Show that $K(D)$ is (formally) skew-symmetric in the sense that

$$
\langle u, K(D) v\rangle=\int_{\mathbb{R}^{n}} u(x) \overline{K(D) v}(x) d x=-\langle K(D) u, v\rangle, \quad \forall(u, v) \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

3. We consider the Cauchy problem
$(\mathcal{P C}) \quad\left\{\partial_{t} u-K(D) u=0, \quad u_{\mid t=0}=u_{0} \in H^{s}\left(\mathbb{R}^{n}\right), \quad s \in \mathbb{R}\right.$.
We denote by $\hat{u}(t, \xi)$ the Fourier transform of $u(t, \cdot)$ with respect to $x \in \mathbb{R}^{n}$.
3.1. Compute $\hat{u}(t, \xi)$ and deduce from the formula thus obtained that

$$
\begin{equation*}
u(t, \cdot) \in H^{s}\left(\mathbb{R}^{n}\right), \quad\|u(t, \cdot)\|_{H^{s}\left(\mathbb{R}^{n}\right)}=\left\|u_{0}(\cdot)\right\|_{H^{s}\left(\mathbb{R}^{n}\right)}, \quad \forall t \in \mathbb{R}_{+}^{*} \tag{I}
\end{equation*}
$$

3.2. Prove that the identity (\mathcal{I}) can also be recovered through energy estimates performed at the level of $(\mathcal{P C})$.
4. Let δ_{0} be the Dirac mass located at the position $x=0$. Show that $\delta_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$ for all $s \in \mathbb{R}$ satisfying $s<-(n / 2)$.
5. We start with $u_{0}=\delta_{0}$. Recall the definition of the wave front set $W F\left(\delta_{0}\right)$ of the distribution δ_{0}. Then describe the content of $W F\left(\delta_{0}\right)$.
6. We consider $(\mathcal{P C})$ for the choice $u_{0}=\delta_{0}$. We denote by u the corresponding solution. We fix some $t \in \mathbb{R}_{+}^{*}$ as well as some $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that we can find a fonction ψ in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ giving rise to

$$
\widehat{\varphi u}(t, \xi)=\int_{\mathbb{R}^{n}} \hat{\varphi}(\xi-\eta) e^{i t|\eta|} d \eta+\psi(\xi)
$$

7. In this question, we consider the Cauchy problem
$(\mathcal{P C} \delta) \quad\left\{\partial_{t} \tilde{u}-i|D| \tilde{u}=0, \quad \tilde{u}_{\mid t=0}=\delta\right.$.
Let $t \in \mathbb{R}_{+}$. Exploit a course result to describe the wave front set $W F(\tilde{u}(t, \cdot))$ of the distribution $\tilde{u}(t, \cdot)$. Justify the answer.
