

Terminal Examination - the 10/12/2021 (2h)

Documents are not allowed

Problem 1. Let p be a prime number. We denote by \mathbb{F}_p the prime field of order p which may be constructed as the integers modulo p, that is $\mathbb{F}_p \equiv \mathbb{Z}/(p\mathbb{Z})$. Let \mathbf{H} be a complex Hilbert space of finite dimension $d \in \mathbb{N}_*$. We consider two unitary operators $A : \mathbf{H} \to \mathbf{H}$ and $B : \mathbf{H} \to \mathbf{H}$ satisfying $A^p = Id$ and $B^p = Id$, as well as

$$\forall (l,m) \in \mathbb{N}^2, \qquad A^l B^m = e^{-2\pi i lm/p} B^m A^l.$$

We suppose that the only subspaces of **H** invariant under both A and B are $\{0\}$ and **H**.

1. Explain why A has at least one eigenvalue $\lambda \in \mathbb{C}$. Show that λ is of modulus 1.

2. Let $0 \neq v \equiv B^0 v \in \mathbf{H}$ be an eigenvector of A of norm 1 that is associated with λ . Show that $B^k v$ is for all $k \in \mathbb{N}$ an eigenvector for A. What is the corresponding eigenvalue ?

3. What can be said about the stability (under the action of A and B) of the (vector) subspace $E \subset \mathbf{H}$ which is generated by the family of vectors $\{B^k v\}_{k \in \mathbb{N}}$?

4. What can be deduced from these observations about the inclusion $E \subset \mathbf{H}$?

5. Explain why the vectors $B^k v$ with $0 \le k \le p-1$ form an orthonormal basis of **H** built with eigenvectors of A. What is the dimension of **H** (in terms of p) ?

6. We consider the eigenspace $E_{\lambda} := \{f \in \mathbf{H}; Af = \lambda f\}.$

6.1. Prove that E_{λ} is of dimension 1. Indication. You can work by contradiction. Let \tilde{v} and v be two non trivial eigenvectors of A with \tilde{v} not colinear to v. Use question 5 to decompose \tilde{v} as a sum of $B^k v$ and then conclude.

6.2. Explain why $\lambda = 1$ is sure to be an eigenvalue of A.

7. The Hilbert space $L^2(\mathbb{F}_p)$ is provided with the counting measure on \mathbb{F}_p which means that, given $f \in L^2(\mathbb{F}_p)$ and $g \in L^2(\mathbb{F}_p)$, we work with the inner product

$$\langle f,g\rangle := \sum_{n=0}^{p-1} f(n)\,\bar{g}(n).$$

7.1. Prove that the modulation operator $U : L^2(\mathbb{F}_p) \longrightarrow L^2(\mathbb{F}_p)$ and the translation operator $V : L^2(\mathbb{F}_p) \longrightarrow L^2(\mathbb{F}_p)$ which are given by

$$U(f) : \mathbb{F}_p \longrightarrow \mathbb{C} \qquad V(f) : \mathbb{F}_p \longrightarrow \mathbb{C} n \longmapsto e^{-2\pi i n/p} f(n), \qquad n \longmapsto f(n-1),$$

are unitary operators on $L^2(\mathbb{F}_p)$.

 \implies T.S.V.P.

7.2. Verify that we have $U^p = Id$ and $V^p = Id$, as well as

$$\forall (l,m) \in \mathbb{N}^2_*, \qquad U^l V^m = e^{-2\pi i lm/p} V^m U^l.$$

7.3. We consider the (finite) family of Dirac functions $\{\delta_\ell\}_\ell \in L^2(\mathbb{F}_p)^{\mathbb{F}_p}$ given by

$$\mathbb{F}_p \ni n \longmapsto \delta_{\ell}(n) := \begin{cases} 1 & \text{if } n = \ell, \\ 0 & \text{if } n \neq \ell, \end{cases} \qquad \ell \in \mathbb{F}_p.$$

7.3.a. What can be said about the family of vectors δ_{ℓ} with $\ell \in \mathbb{F}_p$?

7.3.b. What can be said about the action of U on the δ_{ℓ} ?

7.4. Use the preceding question **7.3** (that is look at the δ_{ℓ}) to exhibit a self-adjoint operator R on $L^2(\mathbb{F}_p)$ which is such that $e^{-2\pi i R/p} = U$.

7.5. Compute the mean value of R along δ_{ℓ} , that is the quantity $\langle \delta_{\ell}, R \delta_{\ell} \rangle$.

7.6. What could be a possible interpretation of R?

7.7. We consider the (finite) family of functions $\{g_\ell\}_\ell \in L^2(\mathbb{F}_p)^{\mathbb{F}_p}$ given by

$$\mathbb{F}_p \ni n \longmapsto g_{\ell}(n) := \frac{1}{\sqrt{p}} \sum_{k=0}^{p-1} e^{-2\pi i \ell k/p} \, \delta_k(n), \qquad \ell \in \mathbb{F}_p.$$

7.7.a. What can be said about the action of V on the g_{ℓ} ?

7.7.b. Show that the vectors g_{ℓ} with $\ell \in \mathbb{F}_p$ form an orthonormal basis of $L^2(\mathbb{F}_p)$.

7.8. Using the family of functions $\{g_\ell\}_\ell \in L^2(\mathbb{F}_p)^{\mathbb{F}_p}$, determine a self-adjoint operator S on $L^2(\mathbb{F}_p)$ which is such that $e^{2\pi i S/p} = V$.

7.9. Do the operators R and S commute ? Justify the answer (for instance by looking at the consequences on U and V).

8. Let v be an eigenvector of A of norm 1 that is associated with the eigenvalue $\lambda = 1$ (such v does exist in view of question 6.2).

8.1. Explain why the *p* relations $W(B^{\ell}v) = \delta_{\ell}$ with $\ell \in \mathbb{F}_p$ allow to define some unitary surjective map *W* from **H** onto $L^2(\mathbb{F}_p)$.

8.2. Prove that $WAW^{-1} = U$ and $WBW^{-1} = V$. What is the name of the theorem which is associated with this relation.

 \implies T.S.V.P.

Problem 2. Let $\chi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n; \mathbb{R})$ be a smooth compactly supported function with $\chi \equiv 1$ in a neighbourhood of the position $\xi = 0$. Consider the symbol

$$K(\xi) := i |\xi| (1 - \chi(\xi)), \qquad |\xi| := (\xi_1^2 + \dots + \xi_n^2)^{1/2}, \qquad \xi \in \mathbb{R}^n$$

1. Explain why the function $\xi \mapsto K(\xi)$ is a symbol in the class $S^1(\mathbb{R}^n)$.

2. Let K(D) be the pseudo-differential operator associated to the symbol K, that is

$$[K(D) u](x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix\cdot\xi} K(\xi) \hat{u}(\xi) d\xi$$

2.1. We select some function u in the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. Prove that K(D)u is a bounded function. What more needs to be said about K(D)u?

2.2. Show that K(D) is (formally) skew-symmetric in the sense that

$$\langle u, K(D)v \rangle = \int_{\mathbb{R}^n} u(x) \ \overline{K(D)v}(x) \, dx = -\langle K(D)u, v \rangle, \qquad \forall (u,v) \in \mathcal{S}(\mathbb{R}^n).$$

3. We consider the Cauchy problem

$$(\mathcal{PC}) \qquad \left\{ \partial_t u - K(D) \, u = 0 \,, \qquad u_{|t=0} = u_0 \in H^s(\mathbb{R}^n) \,, \qquad s \in \mathbb{R} \,. \right.$$

We denote by $\hat{u}(t,\xi)$ the Fourier transform of $u(t,\cdot)$ with respect to $x \in \mathbb{R}^n$.

3.1. Compute $\hat{u}(t,\xi)$ and deduce from the formula thus obtained that

$$(\mathcal{I}) \qquad u(t,\cdot) \in H^s(\mathbb{R}^n), \qquad || u(t,\cdot) ||_{H^s(\mathbb{R}^n)} = || u_0(\cdot) ||_{H^s(\mathbb{R}^n)}, \qquad \forall t \in \mathbb{R}^*_+.$$

3.2. Prove that the identity (\mathcal{I}) can also be recovered through energy estimates performed at the level of (\mathcal{PC}) .

4. Let δ_0 be the Dirac mass located at the position x = 0. Show that $\delta_0 \in H^s(\mathbb{R}^n)$ for all $s \in \mathbb{R}$ satisfying s < -(n/2).

5. We start with $u_0 = \delta_0$. Recall the definition of the wave front set $WF(\delta_0)$ of the distribution δ_0 . Then describe the content of $WF(\delta_0)$.

6. We consider (\mathcal{PC}) for the choice $u_0 = \delta_0$. We denote by u the corresponding solution. We fix some $t \in \mathbb{R}^*_+$ as well as some $\varphi \in \mathcal{C}^{\infty}_0(\mathbb{R}^n)$. Show that we can find a fonction ψ in the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ giving rise to

$$\widehat{\varphi u}(t,\xi) = \int_{\mathbb{R}^n} \hat{\varphi}(\xi-\eta) \ e^{it |\eta|} \ d\eta + \psi(\xi).$$

7. In this question, we consider the Cauchy problem

 $\left(\mathcal{PC}\delta\right) \qquad \left\{ \left.\partial_t \tilde{u} \,-\, i \,\left|D\right| \tilde{u} = 0 \,, \qquad \tilde{u}_{|t=0} = \delta \,. \right.$

Let $t \in \mathbb{R}_+$. Exploit a course result to describe the wave front set $WF(\tilde{u}(t, \cdot))$ of the distribution $\tilde{u}(t, \cdot)$. Justify the answer.