## Microlocal Analysis

## Correction of the CC5 on quantization

Documents are not allowed

## Surname :

## First name :

We work on $L^{2} \equiv L^{2}(\mathbb{R} ; \mathbb{C})$ with the two (unbounded essentially) self-adjoint operators

$$
\begin{array}{rlrl}
X: L^{2} & \longrightarrow L^{2} & P: L^{2} & \longrightarrow L^{2} \\
f & \longmapsto x f, & f & \longmapsto-i \partial_{x} f .
\end{array}
$$

1. Compute the commutator $[X, P]$.

$$
[X, P]=X P-P X=x\left(-i \partial_{x}\right)-\left(-i \partial_{x}\right) x=-i x \partial_{x}+i x \partial_{x}+i I d=i I d
$$

2. Recall (in terms of $X$ and $P$ ) the definition of the Weyl quantization of $x^{2} p$.

$$
Q_{W e y l}\left(x^{2} p\right)=\frac{1}{(2+1)!} \sum_{\sigma \in \mathcal{S}_{3}} \sigma(X, X, P)=\frac{1}{3}\left(X^{2} P+X P X+P X^{2}\right)
$$

3. Express the above expression in terms of $X P X$.

$$
\begin{aligned}
Q_{W e y l}\left(x^{2} p\right) & =\frac{1}{3}(X[X, P]+X P X+X P X+[P, X] X+X P X) \\
& =\frac{1}{3}(i X+3 X P X-i X)=X P X
\end{aligned}
$$

4. Let $f(x, p)$ be a function in the Schwartz space, that is in $\mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathbb{C}\right)$. We denote by $\hat{f}(a, b)$ its Fourier transform (in both variables $x$ and $p$ ).
4.1. Complete the two formulas below for the Weyl quantization of the symbol $f$ :

$$
\begin{aligned}
Q_{W e y l}(f) & =(2 \pi)^{-n} \iint \hat{f}(a, b) e^{i(a \cdot X+b \cdot P)} d a d b \\
& =(2 \pi \hbar)^{-n} \iint e^{-i(y-x) \xi / \hbar} f\left(\frac{x+y}{2}, \xi\right) d y d \xi
\end{aligned}
$$

4.2. What can be said about the action on $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ of $Q_{\text {Weyl }}$ ?

We have seen (during the course) that $Q_{W e y l}$ is a constant multiple of a unitary map on $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ onto the space $H S\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ of Hilbert-Schmidt operators.
4.3. Complete the following formula : $Q_{W e y l}(f)^{*}=Q_{W e y l}(\bar{f})$.
5. We recall that the Wick-ordered quantization $Q_{W i c k}$ of a polynomial in $z=x-i p$ and $\bar{z}=x+i p$ is obtained by putting all lowering operators to the right (acting first) and all raising operators to the left (acting second).

### 5.1. What is the name of the operator $Q_{\text {Wick }}(\bar{z})$ ?

By definition, we have $Q_{\text {Wick }}(\bar{z})=X+i P=x+\partial_{x}$ which is the lowering (or annihilation) operator. This can be checked by testing $Q_{\text {Wick }}(\bar{z})$ on the ground state $e^{-x^{2} / 2}$ to find that

$$
Q_{W i c k}(\bar{z})\left(e^{-x^{2} / 2}\right)=x e^{-x^{2} / 2}+\partial_{x}\left(e^{-x^{2} / 2}\right)=0
$$

### 5.2. Compute

$$
\begin{aligned}
Q_{W i c k}\left(\bar{z} z^{3}+z\right)\left(e^{-x^{2} / 2}\right) & =\left[(X-i P)^{3}(X+i P)+(X-i P)\right]\left(e^{-x^{2} / 2}\right) \\
& =(X-i P)^{3} Q_{W i c k}(\bar{z})\left(e^{-x^{2} / 2}\right)+\left[x e^{-x^{2} / 2}-\partial_{x}\left(e^{-x^{2} / 2}\right)\right] \\
& =2 x e^{-x^{2} / 2}
\end{aligned}
$$

6. Compute $Q_{\text {Wick }}\left(x^{2}\right)$ in terms of $X^{2}$ and $I d$.

$$
\begin{aligned}
Q_{W i c k}\left(x^{2}\right)= & \frac{1}{4} Q_{W i c k}\left((z+\bar{z})^{2}\right)=\frac{1}{4} Q_{W i c k}\left(z^{2}+2 z \bar{z}+\bar{z}^{2}\right) \\
= & \frac{1}{4}\left((X-i P)^{2}+2(X-i P)(X+i P)+(X+i P)^{2}\right) \\
= & \frac{1}{4}\left(X^{2}-i P X-i X P-P^{2}+2 X^{2}-2 i P X\right. \\
& \left.\quad+2 i X P+2 P^{2}+X^{2}+i X P+i P X-P^{2}\right) \\
= & \frac{1}{4}\left(4 X^{2}+2 i[X, P]\right)=X^{2}+\frac{1}{2} i(i I d)=X^{2}-\frac{1}{2} I d .
\end{aligned}
$$

