## Microlocal Analysis

CC5 on quantization, the $03 / 12 / 2021$ ( 30 mn )

Documents are not allowed

## Surname :

## First name :

We work on $L^{2} \equiv L^{2}(\mathbb{R} ; \mathbb{C})$ with the two (unbounded essentially) self-adjoint operators

$$
\begin{array}{rlrl}
X: L^{2} & \longrightarrow L^{2} & P: L^{2} & \longrightarrow L^{2} \\
f & \longmapsto x f, & f & \longmapsto-i \partial_{x} f .
\end{array}
$$

1. Compute the commutator $[X, P]$.
$[X, P]=$
2. Recall (in terms of $X$ and $P$ ) the definition of the Weyl quantization of $x^{2} p$.
$Q_{W e y l}\left(x^{2} p\right)=$
3. Express the above expression only in terms of $X P X$.
$Q_{W e y l}\left(x^{2} p\right)=$
4. Let $f(x, p)$ be a function in the Schwartz space, that is in $\mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathbb{C}\right)$. We denote by $\hat{f}(a, b)$ its Fourier transform (in both variables $x$ and $p$ ).
4.1. Complete the two formulas below for the Weyl quantization of the symbol $f$ :

$$
\begin{array}{rlrl}
Q_{\text {Weyl }}(f) & =(2 \pi)^{-n} \iint & \hat{f}(a, b) d a d b \\
& =(2 \pi \hbar)^{-n} \iint e^{-i} & \xi / \hbar & f(, \xi) d y d \xi
\end{array}
$$

4.2. What can be said about the action on $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ of $Q_{W e y l}$ ?

$$
\text { T.S.V.P. } \quad \Longrightarrow
$$

4.3. Complete the following formula : $Q_{W e y l}(f)^{*}=Q_{W e y l}(\quad)$.
5. We recall that the Wick-ordered quantization $Q_{W i c k}$ of a polynomial in $z=x-i p$ and $\bar{z}=x+i p$ is obtained by putting all operators (coming from $\bar{z}$ ) to the right (acting first) and all operators (coming from $z$ ) to the left (acting second).
5.1. What is the value of $Q_{W i c k}(\bar{z})\left(e^{-x^{2} / 2}\right)$ and the name of the operator $Q_{W i c k}(\bar{z})$ ? $Q_{W i c k}(\bar{z})\left(e^{-x^{2} / 2}\right)=$ Name :

### 5.2. Compute

$Q_{W i c k}\left(\bar{z} z^{3}+z\right)\left(e^{-x^{2} / 2}\right)=$
6. Compute $Q_{W i c k}\left(x^{2}\right)$ in terms of $X^{2}$ and $I d$.
$Q_{W i c k}\left(x^{2}\right)=$

