

Microlocal Analysis

CC5 on quantization, the 03/12/2021 (30mn)

Documents are not allowed

Surname :

First name :

We work on $L^2 \equiv L^2(\mathbb{R};\mathbb{C})$ with the two (unbounded essentially) self-adjoint operators

1. Compute the commutator [X, P].

[X, P] =

2. Recall (in terms of X and P) the definition of the Weyl quantization of x^2p .

$$Q_{Weyl}(x^2p) =$$

3. Express the above expression only in terms of XPX.

 $Q_{Weyl}(x^2p) =$

4. Let f(x, p) be a function in the Schwartz space, that is in $\mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n; \mathbb{C})$. We denote by $\hat{f}(a, b)$ its Fourier transform (in both variables x and p).

4.1. Complete the two formulas below for the Weyl quantization of the symbol f:

$$Q_{Weyl}(f) = (2\pi)^{-n} \iint \hat{f}(a,b) \, dadb$$
$$= (2\pi\hbar)^{-n} \iint e^{-i} \frac{\xi/\hbar}{\hbar} f(a,b) \, dyd\xi.$$

4.2. What can be said about the action on $L^2(\mathbb{R}^n \times \mathbb{R}^n)$ of Q_{Weyl} ?

 $\mathrm{T.S.V.P.} \quad \Longrightarrow \quad$

4.3. Complete the following formula : $Q_{Weyl}(f)^* = Q_{Weyl}()$.

5. We recall that the Wick-ordered quantization Q_{Wick} of a polynomial in z = x - ip and $\bar{z} = x + ip$ is obtained by putting all operators (coming from \bar{z}) to the right (acting first) and all operators (coming from z) to the left (acting second).

5.1. What is the value of $Q_{Wick}(\bar{z})(e^{-x^2/2})$ and the name of the operator $Q_{Wick}(\bar{z})$?

$$Q_{Wick}(\bar{z})(e^{-x^2/2}) =$$
 Name :

5.2. Compute

 $Q_{Wick}(\bar{z}z^3 + z)(e^{-x^2/2}) =$

6. Compute $Q_{Wick}(x^2)$ in terms of X^2 and Id.

$$Q_{Wick}(x^2) =$$