Microlocal Analysis

Correction of the CC4 about the uncertainty principle

Documents are not allowed

Surname :

First name :

Let $\psi \in \mathcal{S}(\mathbb{R} ; \mathbb{C})$ be a function in the Schwartz space (the set of functions whose derivatives are rapidly decreasing). We assume that ψ is of norm 1 in $L^{2} \equiv L^{2}(\mathbb{R} ; \mathbb{C})$. Let X be the position operator (defined by the multiplication by $X=x \times$). Let P be the momentum operator (defined by $P=-i \partial_{x}$). Given $a \in \mathbb{R}$ and $b \in \mathbb{R}$, introduce

$$
\begin{aligned}
\left\langle\Delta_{\psi}^{a} X\right\rangle & :=\langle(X-a) \psi,(X-a) \psi\rangle^{1 / 2}=\left(\int_{\mathbb{R}}(x-a)^{2}|\psi(x)|^{2} d x\right)^{1 / 2} \\
\left\langle\Delta_{\psi}^{b} P\right\rangle & :=\frac{1}{2 \pi}\langle(P-2 \pi b) \psi,(P-2 \pi b) \psi\rangle^{1 / 2}
\end{aligned}
$$

Denote by $\hat{\psi}$ the Fourier transform of ψ. By convention and Plancherel theorem, we have

$$
\hat{\psi}(\xi) \equiv \mathcal{F} \psi(\xi):=\int_{\mathbb{R}} e^{-2 \pi i \xi x} \psi(x) d x, \quad \int_{\mathbb{R}}|\psi(x)|^{2} d x=\int_{\mathbb{R}}|\hat{\psi}(\xi)|^{2} d \xi
$$

1. Determine the value a_{m} of a for which $\left\langle\Delta_{\psi}^{a} X\right\rangle$ is minimal. Justify the answer.

$$
a_{m}(\psi)=\langle\psi, X \psi\rangle=\int_{\mathbb{R}} x|\psi(x)|^{2} d x
$$

With a_{m} as above, this is because

$$
\left\langle\Delta_{\psi}^{a} X\right\rangle^{2}=\left(a-a_{m}\right)^{2}+\int_{\mathbb{R}} x^{2}|\psi(x)|^{2} d x-a_{m}^{2}
$$

2. Show that $\mathcal{F}(P \psi / 2 \pi)=\xi \hat{\psi}(\xi)$. Then, compute $\left\langle\Delta_{\psi}^{b} P\right\rangle$ in terms of $\hat{\psi}$ and determine the value $b_{m}(\psi)$ of b for which $\left\langle\Delta_{\psi}^{b} P\right\rangle$ is minimal.

$$
\left\langle\Delta_{\psi}^{b} P\right\rangle=\left(\int_{\mathbb{R}}(\xi-b)^{2}|\hat{\psi}(\xi)|^{2} d \xi\right)^{1 / 2}, \quad b_{m}(\psi)=\langle\psi, P \psi\rangle=\int_{\mathbb{R}} \xi|\hat{\psi}(\xi)|^{2} d \xi
$$

Since $\mathcal{F}(P \psi / 2 \pi)=\xi \hat{\psi}(\xi)$, by Plancherel theorem, we have

$$
\left\langle\Delta_{\psi}^{b} P\right\rangle^{2}=\langle\mathcal{F}((P / 2 \pi-b) \psi), \mathcal{F}((P / 2 \pi-b) \psi)\rangle=\int_{\mathbb{R}}(\xi-b)^{2}|\hat{\psi}(\xi)|^{2} d \xi
$$

Then, the same arguments as above give rise to the value of $b_{m}(\psi)$.
3. Find a unitary operator $U: L^{2} \rightarrow L^{2}$ which is adjusted in such a way that $a_{m}(U \psi)=0$ and $b_{m}(U \psi)=0$.

$$
U(\psi)=e^{-2 \pi i \alpha x} U(x+\beta), \quad \alpha=b_{m}(\psi), \quad \beta=a_{m}(\psi)
$$

Indeed, we have

$$
a_{m}(U \psi)=\int_{\mathbb{R}} x|U(\psi)(x)|^{2} d x=\int_{\mathbb{R}}(x+\beta)|\psi(x+\beta)|^{2} d x-\beta=a_{m}(\psi)-\beta
$$

as well as

$$
\begin{aligned}
b_{m}(U \psi) & =\int_{\mathbb{R}} \xi|\mathcal{F}(U(\psi))(\xi)|^{2} d \xi \\
& =\int_{\mathbb{R}} \xi|\hat{\psi}(\xi+\alpha)|^{2} d \xi=\int_{\mathbb{R}}(\xi+\alpha)|\hat{\psi}(\xi+\alpha)|^{2} d \xi-\alpha=b_{m}(\psi)-\alpha
\end{aligned}
$$

4. We assume here that $a_{m}(\psi)=0$ and $b_{m}(\psi)=0$. Compute :

$$
-\int_{\mathbb{R}} x \psi(x) \psi^{\prime}(x) d x=-\frac{1}{2} \int_{\mathbb{R}} x \partial_{x}\left[\psi(x)^{2}\right] d x=\frac{1}{2} \int_{\mathbb{R}} \psi(x)^{2} d x=\frac{1}{2} .
$$

and prove that the product $\left\langle\Delta_{\psi}^{0} X\right\rangle\left\langle\Delta_{\psi}^{0} P\right\rangle$ can be bounded below by a positive constant to be determined.

It suffices to apply the Cauchy-Schwartz inequality to obtain

$$
\frac{1}{2}=\left|\int_{\mathbb{R}}(X \psi)(x)(P \psi)(x) d x\right| \leq 2 \pi\left\langle\Delta_{\psi}^{0} X\right\rangle\left\langle\Delta_{\psi}^{0} P\right\rangle
$$

In other words

$$
\left\langle\Delta_{\psi}^{0} X\right\rangle\left\langle\Delta_{\psi}^{0} P\right\rangle=\left(\int_{\mathbb{R}} x^{2}|\psi(x)|^{2} d x\right)^{1 / 2}\left(\int_{\mathbb{R}} \xi^{2}|\hat{\psi}(\xi)|^{2} d \xi\right)^{1 / 2} \geq \frac{1}{4 \pi}
$$

5. Let $a \in S^{m}$ be a symbol of order m. We recall that the pseudo-differential operator associated with a is given by

$$
\begin{aligned}
O p(a): \mathcal{S}\left(\mathbb{R}^{n}\right) & \longrightarrow \mathcal{S}\left(\mathbb{R}^{n}\right) \\
u & \longmapsto O p(a)(u)(x):=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) d \xi
\end{aligned}
$$

5.1. We denote by $\left[O p(a), \partial_{j}\right]$ the commutator of $O p(a)$ with the derivative with respect to the $j^{\text {th }}$ variable. Compute its symbol.

$$
\left[O p(a), \partial_{j}\right]=O p\left(-\partial_{x_{j}} a\right)
$$

5.2. Same question with the multiplication by x_{j}.

$$
\left[O p(a), x_{j}\right]=O p\left(-i \partial_{\xi_{j}} a\right) .
$$

