

Microlocal Analysis

CC4 about the regularity of kernels, the 02/12/2022 (30mn)

Documents are not allowed

Surname :

First name :

Let $m \in \mathbb{R}$ and $a(x,\xi) \in S_{1,0}^m(\mathbb{R}^n)$.

1.1. The kernel K(x, y) of the pseudo-differential operator a(x, D) is such that

$$a(x,D)u = \int_{\mathbb{R}^n} K(x,y) u(y) dy, \qquad \forall u \in \mathcal{S}(\mathbb{R}^n).$$

Recall how the kernel K can be computed (at least formally) from the symbol a.

K(x, y) =

1.2. Let $(m_1, m_2) \in \mathbb{R}^2$. Given $a \in S_{1,0}^{m_1}(\mathbb{R}^n)$ and $b \in S_{1,0}^{m_2}(\mathbb{R}^n)$, define

$$a \# b(x,\xi) := \sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha!} \left. \partial_{\eta}^{\alpha} (a(x,\eta))_{|\eta=\xi} \right. D_y^{\alpha} (b(y,\xi))_{|y=x}.$$

What is the sense of the above sum ? Recall the composition formula for pseudo-differential operators a(x, D) and b(x, D) in terms of the symbol a # b.

1.3. We fix $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ such that $x \neq y$. Select φ and ψ in $C_c^{\infty}(\mathbb{R}^n)$ such that ϕ is equal to 1 near x, ψ is equal to 1 near y, and the supports of ϕ and ψ are disjoint. We denote by M_{ϕ} and M_{ψ} the multiplication operators by ϕ and ψ . Use the question 1.2 to show that $T := M_{\phi} a(x, D) M_{\psi}$ is in $Op(S_{1,0}^{-\infty}(\mathbb{R}^n))$.

 \implies T.S.V.P.

1.4. Compute the kernel $\tilde{K}(x,y)$ of T in terms of K, φ and ψ .

 $\tilde{K}(x,y) =$

1.5. Using the questions 1.1 and 1.3, prove that \tilde{K} is a bounded continuous function which is such that

$$\forall N \in \mathbb{N}; \quad \exists C_N; \quad |\tilde{K}(x,y)| \le C_N (1+|x-y|)^{-N}.$$

1.6. Show that K is smooth (of class C^{∞}) near (x, y).

1.7. We assume that a(x, D) is a differential operator with smooth coefficients. What can be said about the support of its kernel (viewed as a distribution) ?