Microlocal Analysis

CC4 about the uncertainty principle. The 26/11/2021 (30mn)

Documents are not allowed

Surname :

First name :

Let $\psi \in \mathcal{S}(\mathbb{R} ; \mathbb{C})$ be a function in the Schwartz space (the set of functions whose derivatives are rapidly decreasing). We assume that ψ is of norm 1 in $L^{2} \equiv L^{2}(\mathbb{R} ; \mathbb{C})$. Let X be the position operator (defined by the multiplication by x) and P be the momentum operator (defined by $-i \partial_{x}$). Given $a \in \mathbb{R}$ and $b \in \mathbb{R}$, introduce

$$
\begin{aligned}
& \left\langle\Delta_{\psi}^{a} X\right\rangle:=\langle(X-a) \psi,(X-a) \psi\rangle^{1 / 2}=\left(\int_{\mathbb{R}}(x-a)^{2}|\psi(x)|^{2} d x\right)^{1 / 2} \\
& \left\langle\Delta_{\psi}^{b} P\right\rangle:=\frac{1}{2 \pi}\langle(P-2 \pi b) \psi,(P-2 \pi b) \psi\rangle^{1 / 2}
\end{aligned}
$$

Denote by $\hat{\psi}$ the Fourier transform of ψ. By convention and Plancherel theorem, we have

$$
\hat{\psi}(\xi):=\int_{\mathbb{R}} e^{-2 \pi i \xi x} \psi(x) d x, \quad \int_{\mathbb{R}}|\psi(x)|^{2} d x=\int_{\mathbb{R}}|\psi(\xi)|^{2} d \xi
$$

1. Determine the value $a_{m}(\psi)$ of a for which $\left\langle\Delta_{\psi}^{a} X\right\rangle$ is minimal. Justify the answer.

$$
a_{m}(\psi)=
$$

2.1. Show that $\mathcal{F}(P \psi / 2 \pi)=\xi \hat{\psi}(\xi)$.
2.2. Compute $\left\langle\Delta_{\psi}^{b} P\right\rangle$ in terms of $\hat{\psi} . \quad\left\langle\Delta_{\psi}^{b} P\right\rangle=$
2.3. Determine the value $b_{m}(\psi)$ of b for which $\left\langle\Delta_{\psi}^{b} P\right\rangle$ is minimal.

$$
b_{m}(\psi)=
$$

$$
\text { T.S.V.P. } \quad \Longrightarrow
$$

3. Determine α and β adjusted in such a way that the unitary operator $U: L^{2} \rightarrow L^{2}$ given by $U(\psi)=e^{-2 \pi i \alpha x} \psi(x+\beta)$ satisfies $a_{m}(U \psi)=0$ and $b_{m}(U \psi)=0$.

$$
\alpha=\quad \beta=
$$

4. Prove that the product $\left\langle\Delta_{\psi}^{a} X\right\rangle\left\langle\Delta_{\psi}^{b} P\right\rangle$ can be bounded below by a positive constant to be determined.
5. Let $a \in S^{m}$ be a symbol of order m. We recall that the pseudo-differential operator associated with a is given by

$$
\begin{aligned}
O p(a): \mathcal{S}\left(\mathbb{R}^{n}\right) & \longrightarrow \mathcal{S}\left(\mathbb{R}^{n}\right) \\
u & \longmapsto O p(a)(u)(x):=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) d \xi
\end{aligned}
$$

5.1. We denote by $\left[O p(a), \partial_{j}\right]$ the commutator of $O p(a)$ with the derivative with respect to the $j^{t h}$ variable. Compute its symbol.

$$
\left[O p(a), \partial_{j}\right]=O p(\quad)
$$

5.2. Same question with the multiplication by x_{j}.

$$
\left[O p(a), x_{j}\right]=O p(\quad)
$$

