Microlocal Analysis

Correction of the CC3

We consider on the Hilbert space $\mathcal{H}:=L^{2}([-1,1])$ the position operator A and the momentum operator B defined by

$$
A \psi(x)=x \psi(x), \quad B \psi(x)=-i \hbar \psi^{\prime}(x)=-i \hbar \frac{d \psi}{d x}(x)
$$

1.1. Prove that A is a bounded operator and compute its operator norm $\|A\|$.

Since the multiplicative factor $|x|$ is bounded by 1 on $[-1,1]$, we have

$$
\|A \psi\|^{2}=\int_{-1}^{1} x^{2}|\psi(x)|^{2} d x \leq \int_{-1}^{1}|\psi(x)|^{2} d x=\|\psi\|^{2}
$$

This means that $\|A\| \leq 1$. Let $\varepsilon \in[0,1]$ and let $\psi \in \mathcal{H}$ of norm 1 whose support is contained in $[1-\varepsilon, 1]$. Then

$$
\|A \psi\|^{2}=\int_{1-\varepsilon}^{1} x^{2}|\psi(x)|^{2} d x \geq(1-\varepsilon)^{2} \int_{1-\varepsilon}^{1}|\psi(x)|^{2} d x=(1-\varepsilon)^{2}\|\psi\|^{2}
$$

Since ε can be taken arbitrarily small, this implies that $\|A\|=1$.
1.2. We look at B as an unbounded operator with domain
$\operatorname{Dom}(B):=\left\{\psi \in C^{1}([-1,1]) ; \psi(-1)=\psi(1)\right\}$.
Check that B is symmetric.
We have to show that

$$
\forall(\phi, \psi) \in \operatorname{Dom}(B)^{2}, \quad\langle\phi, B \psi\rangle=\langle B \phi, \psi\rangle
$$

We compute by integration by parts

$$
\begin{aligned}
\langle\phi, B \psi\rangle & =\int_{-1}^{1} \bar{\phi}(x) \times\left(-i \hbar \psi^{\prime}(x)\right) d x \\
& =-i \hbar[(\bar{\phi} \psi)(1)-(\bar{\phi} \psi)(-1)]+i \hbar \int_{-1}^{1} \bar{\phi}^{\prime}(x) \times \psi(x) d x \\
& =0+i \hbar \int_{-1}^{1} \overline{-i \hbar \phi^{\prime}}(x) \times \psi(x) d x=\langle B \phi, \psi\rangle
\end{aligned}
$$

where we have exploited the boundary conditions.
1.3. For $n \in \mathbb{Z}$, define $\psi_{n}(x):=e^{\pi i n x} / \sqrt{2}$. Show that ψ_{n} is in $\operatorname{Dom}(B)$, and that $\left(\psi_{n}\right)_{n \in \mathbb{Z}}$ constitutes an orthonormal basis of eigenvectors for B with real eigenvalues.

The function ψ_{n} is smooth (of class C^{∞}) and it satisfies

$$
\psi_{n}(1)=e^{\pi i n} / \sqrt{2}=(-1)^{n} / \sqrt{2}=\psi_{n}(-1) .
$$

It is therefore in $\operatorname{Dom}(B)$. We have clearly

$$
B \psi_{n}=-i \hbar(\pi i n) e^{\pi i n x} / \sqrt{2}=\hbar \pi n \psi_{n},
$$

which indicates that ψ_{n} is an eigenvector for B with eigenvalue $\hbar \pi n \in \mathbb{R}$. The sequence of functions ψ_{n} forms clearly an orthonormal basis of \mathcal{H}. To show that it is a basis, it suffices to remark that the vector space spanned by the ψ_{n} is dense in \mathcal{H} (because a function in L^{2} whose all Fourier coefficients are zero is simply zero).
1.4. Let $\psi \in \operatorname{Dom}(A B) \cap \operatorname{Dom}(B A)$. Complete the following formula

$$
A B \psi-B A \psi=x \times\left(-i \hbar \psi^{\prime}(x)\right)+i \hbar(x \psi(x))^{\prime}=i \hbar \psi(x) .
$$

1.5. Given a self-adjoint operator A on \mathcal{H} and a unit vector $\psi \in \mathcal{H}$, recall that the uncertainty of A in the state ψ is defined by

$$
\Delta_{\psi} A:=\sqrt{\left\langle A^{2}\right\rangle_{\psi}-\langle A\rangle_{\psi}^{2}}, \quad\langle A\rangle_{\psi}:=\langle\psi, A \psi\rangle .
$$

Explain why $\Delta_{\psi_{n}} A$ and $\Delta_{\psi_{n}} B$ are both unambiguously defined, and compute $\Delta_{\psi_{n}} B$.
Since A is bounded, we can define $A \psi_{n} \in \mathcal{H}$ as well as $A^{2} \psi_{n} \in \mathcal{H}$, and therefore $\Delta_{\psi_{n}} A$. On the other hand $B \psi_{n}=\hbar \pi n \psi_{n} \in \mathcal{H}$ so that

$$
\langle B\rangle_{\psi_{n}}=\hbar \pi n, \quad\left\langle B^{2}\right\rangle_{\psi_{n}}=(\hbar \pi n)^{2},
$$

implying that $\Delta_{\psi_{n}} B=0$.
1.6. Recall precisely the content of the uncertainty principle. Is it verified in the case of the above data A, B and ψ ? If not, could you explain why.

Theorem (uncertainty principle). Under the preceding assumptions, for all unit vector ψ such that $\psi \in \operatorname{Dom}(A B) \cap \operatorname{Dom}(B A)$, we have $\Delta_{\psi} A \times \Delta_{\psi} B \geq \hbar / 2>0$.

Now, from the above computations, we get $\Delta_{\psi_{n}} A \times \Delta_{\psi_{n}} B=0$. This is not a contradiction because $\psi_{n} \notin \operatorname{Dom}(B A)$. Indeed

$$
\left(A \psi_{n}\right)(1)=e^{\pi i n}, \quad\left(A \psi_{n}\right)(-1)=-e^{-\pi i n}, \quad\left(A \psi_{n}\right)(1) \neq\left(A \psi_{n}\right)(-1) .
$$

