

2022 - 2023

Microlocal Analysis

CC3 about the uncertainty principle, the 25/11/2022 (30mn)

Documents are not allowed

Surname :

First name :

We consider on the Hilbert space $\mathcal{H} := L^2([-1,1])$ the position operator A and the momentum operator B defined by

$$A\psi(x) = x \psi(x), \qquad B\psi(x) = -i\hbar \psi'(x) = -i\hbar \frac{d\psi}{dx}(x).$$

1.1. Prove that A is a bounded operator and compute its operator norm ||A||.

1.2. We look at B as an unbounded operator with domain

 $Dom(B) := \{ \psi \in C^1([-1,1]); \psi(-1) = \psi(1) \}.$

Check that B is symmetric.

1.3. For $n \in \mathbb{Z}$, define $\psi_n(x) := e^{\pi i n x} / \sqrt{2}$. Show that ψ_n is in Dom(B), and that $(\psi_n)_{n \in \mathbb{Z}}$ constitutes an orthonormal basis of eigenvectors for B with real eigenvalues.

 \implies T.S.V.P.

1.4. Let $\psi \in \text{Dom}(AB) \cap \text{Dom}(BA)$. Complete the following formula

 $AB\psi-BA\psi=$

1.5. Given a self-adjoint operator A on \mathcal{H} and a unit vector $\psi \in \mathcal{H}$, recall that the *uncertainty* of A in the state ψ is defined by

$$\Delta_{\psi}A := \sqrt{\langle A^2 \rangle_{\psi} - \langle A \rangle_{\psi}^2}, \qquad \langle A \rangle_{\psi} := \langle \psi, A\psi \rangle.$$

Explain why $\Delta_{\psi_n} A$ and $\Delta_{\psi_n} B$ are both unambiguously defined, and compute $\Delta_{\psi_n} B$.

1.6. Recall the content of the *uncertainty principle* in the case of (A, B, ψ) .

1.7. Explain why the uncertainty principle is not verified when dealing with (A, B, ψ_n) .