

Microlocal Analysis

Correction of the CC2

We work on \mathbb{R}^n . We consider the Laplace operator $\Delta := \sum_{i=1}^n \frac{\partial^2}{\partial_{x_i}^2}$.

1.1. What is the symbol $a(x,\xi)$ that is associated to the action of the operator $1 - \Delta$ through the relation $1 - \Delta = op(a) = a(x, D)$.

By definition, the symbol $a(x,\xi)$ associated to the action of a(x,D) is such that

$$a(x,D)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\xi} a(x,\xi) \,\hat{u}(\xi) \,\,d\xi\,,$$

where $\hat{u} \equiv \mathcal{F}u$ is the Fourier transform of u. From

$$(1-\Delta)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\xi} \left(1+|\xi|^2\right) \hat{u}(\xi) \ d\xi \,,$$

we can see that $a(x,\xi) = 1 + |\xi|^2$.

1.2. Determine the symbol $b(x,\xi)$ of the pseudo-differential operator allowing to satisfy the relation b(x,D) a(x,D) = Id. The operator b(x,D) is denoted by $(1-\Delta)^{-1}$. Indicate on the right its symbol class.

It suffices to remark that

$$u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\xi} (1+|\xi|^2)^{-1} (1+|\xi|^2) \,\hat{u}(\xi) \, d\xi$$

= $\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\xi} (1+|\xi|^2)^{-1} \mathcal{F}((1-\Delta)u)(\xi) \, d\xi$,

to deduce that $b(x,\xi) = (1+|\xi|^2)^{-1}$ which is in the symbol class $S_{1,0}^{-2}$.

1.3. Determine the symbol $c(x,\xi)$ of the pseudo-differential operator $1 - (1 - \Delta)^{-1}$. Indicate on the right its symbol class.

 $c(x,\xi) = 1 - (1 + |\xi|^2)^{-1}, \qquad c(x,D) \in S^0_{1,0}.$

In fact, a, b and c do not depend on x. They are Fourier multipliers.

1.4. Let Ω be a relatively compact open subset of \mathbb{R}^n . Fix $s \in \mathbb{R}$ and $f \in H^s(\Omega)$. Given some $s_0 < s$, we consider a distribution $u \in H^{s_0}(\Omega)$ which is such that $\Delta u = f$.

1.4.1. We recall Peetre's inequality :

$$\langle \xi' \rangle^{\tilde{s}} \langle \xi \rangle^{-\tilde{s}} \le 2^{|\tilde{s}|} \langle \xi - \xi' \rangle^{|s|}, \qquad \forall (\tilde{s}, \xi, \xi') \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$$

We select a cutoff function $\chi \in C_c^{\infty}(\Omega)$. Show that $\chi \Delta u \in H^s(\mathbb{R}^n)$.

The function χ can be extended as a function in the Schwartz space so that

$$\langle \xi \rangle^{\tilde{s}} |\chi(\xi)| \in L^2(\mathbb{R}^n), \quad \forall \tilde{s} \in \mathbb{R}.$$

On the other hand, we know that $\langle \xi' \rangle^{-s} |\hat{f}(\xi')|$ is in L^2 . Now, we have

$$\mathcal{F}(\chi \,\Delta u)(\xi) = \int_{\mathbb{R}^n} \chi(\xi - \xi') \,\hat{f}(\xi') \,d\xi' \,.$$

It follows that

$$\frac{|\mathcal{F}(\chi\,\Delta u)(\xi)|}{\langle\xi\rangle^s} \le \int_{\mathbb{R}^n} |\chi(\xi-\xi')| \; \frac{\langle\xi'\rangle^s}{\langle\xi\rangle^s} \; \frac{|\hat{f}(\xi')|}{\langle\xi'\rangle^s} \; d\xi' \le 2^{|s|} \int_{\mathbb{R}^n} \langle\xi-\xi'\rangle^{|s|} \; |\chi(\xi-\xi')| \; \frac{|\hat{f}(\xi')|}{\langle\xi'\rangle^s} \; d\xi' \; .$$

The right hand side is the convolution of two L^2 -functions. We can conclude with Young's convolution inequality.

1.4.2. Show that $g := (1 - \Delta)^{-1} \chi \Delta u \in H^{s+2}(\mathbb{R}^n)$.

The operator $(1 - \Delta)^{-1}$ is continuous from $H^{s}(\mathbb{R}^{n})$ onto $H^{s+2}(\mathbb{R}^{n})$, since it is a Fourier multiplier of order -2. This implies that g is in $H^{s+2}(\mathbb{R}^{n})$.

1.5. Show that $g = (1 - \Delta)^{-1} [\chi, \Delta] u - (1 - (1 - \Delta)^{-1}) \chi u$.

We can start from the right hand side

$$(1 - \Delta)^{-1} [\chi, \Delta] u - (1 - (1 - \Delta)^{-1}) \chi u = g - (1 - \Delta)^{-1} \Delta(\chi u) - (1 - (1 - \Delta)^{-1}) \chi u = g - (1 - \Delta)^{-1} (\Delta - 1)(\chi u) - (1 - \Delta)^{-1} \chi u - (1 - (1 - \Delta)^{-1}) \chi u = g + \chi u - \chi u = g.$$

1.6. Explain why $R := [\chi, \Delta]$ is a first-order differential operator.

This is just because $R = -2 \nabla \chi \cdot \nabla - \Delta \chi$ which is a differential operator of order 1.

1.7. Let $\psi \in C_c^{\infty}(\Omega)$ be a non negative function which is equal to 1 on the ball $\{\xi; |\xi| \leq 1\}$ and equal to 0 out of the ball $\{\xi; |\xi| \leq 2\}$. Prove that the pseudo-differential operator $e(x, D) := \psi(D) + c(x, D)$ (where c is as in question 1.2) is an isomorphism of $H^s(\mathbb{R}^n)$ for all $s \in \mathbb{R}$.

The symbol of e(x, D) is $e(x, \xi) = \psi(\xi) + 1 - (1 + |\xi|^2)^{-1}$. We find that

$$e(x,0) = \psi(0) + 1 - 1 = 1$$
, $\lim_{|\xi| \to +\infty} e(x,\xi) = 0$,

as well as

$$e(x,\xi) \ge 1 - (1 + |\xi|^2)^{-1} > 0, \qquad \forall \xi \ne 0.$$

It follows that

$$\exists (c,C) \in (\mathbb{R}^*_+)^2; \quad 0 < c \le e(x,\xi) \le C, \quad \forall \xi \in \mathbb{R}^n.$$
(1)

The symbol $e(x,\xi)$ is in $S_{1,0}^0$. This implies that the Fourier multiplier e(x,D) acts continuously from $H^s(\mathbb{R}^n)$ into $H^s(\mathbb{R}^n)$.

From condition (1) - of ellipticity, we can define $e(x,\xi)^{-1} \in S_{1,0}^0$. The pseudo-differential operator e(x,D) is invertible with inverse $e(x,D)^{-1}$ which acts continuously from $H^s(\mathbb{R}^n)$ into $H^s(\mathbb{R}^n)$.

1.8. Show that $\chi u = e(x, D)^{-1} [(1 - \Delta)^{-1}) Ru - g + \psi(D) (\chi u)]$, and deduce from this relation that χu is in $H^{s_0+1}(\mathbb{R}^n)$.

From quastion 1.4, we have

$$(1 - (1 - \Delta)^{-1}) \chi u = (1 - \Delta)^{-1} [\chi, \Delta] u - g,$$

so that

$$e(x, D) (\chi u) = (c(x, D) + \psi(D)) (\chi u) = (1 - \Delta)^{-1} Ru - g + \psi(D) (\chi u)$$

It suffices to compose on the left by $e(x, D)^{-1}$ to recover the expected formula. Then

$$\left. \begin{array}{l} u \in H^{s_0}(\mathbb{R}^n) \\ R \in Op(S^1_{1,0}) \end{array} \right\} \quad \Longrightarrow \quad Ru \in H^{s_0-1}(\mathbb{R}^n) \,.$$

This gives rise to

$$\left. \begin{array}{c} Ru \in H^{s_0 - 1}(\mathbb{R}^n) \\ (1 - \Delta)^{-1} \in Op(S_{1,0}^{-2}) \end{array} \right\} \quad \Longrightarrow \quad (1 - \Delta)^{-1} \, Ru \in H^{s_0 + 1}(\mathbb{R}^n) \, .$$

On the other hand

$$\left. \begin{array}{l} \chi u \in H^{s_0}(\mathbb{R}^n) \\ \psi(D) \in Op(S_{1,0}^{-\infty}) \end{array} \right\} \quad \Longrightarrow \quad \psi(D)u \in H^{+\infty}(\mathbb{R}^n) \,.$$

From question 1.3, we know already that $g \in H^{s+2}(\mathbb{R}^n)$. After summation, since $s_0 < s$, there remains

$$\chi u \in H^{\min(s_0+1,+\infty,s+2)}(\mathbb{R}^n) = H^{s_0+1}(\mathbb{R}^n).$$

Concluding remarks. Due to the pde $\Delta u = f$ and the regularity assumption on the source term f, the regularity of u goes (locally) one step up, from $H^{s_0}_{loc}(\Omega)$ to $H^{s_0+1}_{loc}(\Omega)$. This information comes also from the ellipticity of the operator Δ . Refined (microlocal) versions of this principle do exist : they distinguish between the various directions ξ . If moreover we know that $f \in C^{\infty}(\Omega)$, then, by induction we recover that $u \in C^{\infty}(\Omega)$. This is called hypoellipticity, see this reference.