Microlocal Analysis

Correction of the CC2

We work on \mathbb{R}^{n}. We consider the Laplace operator $\Delta:=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial_{x_{i}}^{2}}$.
1.1. What is the symbol $a(x, \xi)$ that is associated to the action of the operator $1-\Delta$ through the relation $1-\Delta=o p(a)=a(x, D)$.

By definition, the symbol $a(x, \xi)$ associated to the action of $a(x, D)$ is such that

$$
a(x, D) u(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \xi} a(x, \xi) \hat{u}(\xi) d \xi,
$$

where $\hat{u} \equiv \mathcal{F} u$ is the Fourier transform of u. From

$$
(1-\Delta) u(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \xi}\left(1+|\xi|^{2}\right) \hat{u}(\xi) d \xi,
$$

we can see that $a(x, \xi)=1+|\xi|^{2}$.
1.2. Determine the symbol $b(x, \xi)$ of the pseudo-differential operator allowing to satisfy the relation $b(x, D) a(x, D)=I d$. The operator $b(x, D)$ is denoted by $(1-\Delta)^{-1}$. Indicate on the right its symbol class.

It suffices to remark that

$$
\begin{aligned}
u(x) & =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \xi}\left(1+|\xi|^{2}\right)^{-1}\left(1+|\xi|^{2}\right) \hat{u}(\xi) d \xi \\
& =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \xi}\left(1+|\xi|^{2}\right)^{-1} \mathcal{F}((1-\Delta) u)(\xi) d \xi
\end{aligned}
$$

to deduce that $b(x, \xi)=\left(1+|\xi|^{2}\right)^{-1}$ which is in the symbol class $S_{1,0}^{-2}$.
1.3. Determine the symbol $c(x, \xi)$ of the pseudo-differential operator $1-(1-\Delta)^{-1}$. Indicate on the right its symbol class.

$$
c(x, \xi)=1-\left(1+|\xi|^{2}\right)^{-1}, \quad c(x, D) \in S_{1,0}^{0} .
$$

In fact, a, b and c do not depend on x. They are Fourier multipliers.
1.4. Let Ω be a relatively compact open subset of \mathbb{R}^{n}. Fix $s \in \mathbb{R}$ and $f \in H^{s}(\Omega)$. Given some $s_{0}<s$, we consider a distribution $u \in H^{s_{0}}(\Omega)$ which is such that $\Delta u=f$.
1.4.1. We recall Peetre's inequality :

$$
\left\langle\xi^{\prime}\right\rangle^{\tilde{s}}\langle\xi\rangle^{-\tilde{s}} \leq 2^{|\tilde{s}|}\left\langle\xi-\xi^{\prime}\right\rangle^{|s|}, \quad \forall\left(\tilde{s}, \xi, \xi^{\prime}\right) \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} .
$$

We select a cutoff function $\chi \in C_{c}^{\infty}(\Omega)$. Show that $\chi \Delta u \in H^{s}\left(\mathbb{R}^{n}\right)$.
The function χ can be extended as a function in the Schwartz space so that

$$
\langle\xi\rangle^{\tilde{s}}|\chi(\xi)| \in L^{2}\left(\mathbb{R}^{n}\right), \quad \forall \tilde{s} \in \mathbb{R}
$$

On the other hand, we know that $\left\langle\xi^{\prime}\right\rangle^{-s}\left|\hat{f}\left(\xi^{\prime}\right)\right|$ is in L^{2}. Now, we have

$$
\mathcal{F}(\chi \Delta u)(\xi)=\int_{\mathbb{R}^{n}} \chi\left(\xi-\xi^{\prime}\right) \hat{f}\left(\xi^{\prime}\right) d \xi^{\prime}
$$

It follows that

$$
\frac{|\mathcal{F}(\chi \Delta u)(\xi)|}{\langle\xi\rangle^{s}} \leq \int_{\mathbb{R}^{n}}\left|\chi\left(\xi-\xi^{\prime}\right)\right| \frac{\left\langle\xi^{\prime}\right\rangle^{s}}{\langle\xi\rangle^{s}} \frac{\left|\hat{f}\left(\xi^{\prime}\right)\right|}{\left\langle\xi^{\prime}\right\rangle^{s}} d \xi^{\prime} \leq 2^{|s|} \int_{\mathbb{R}^{n}}\left\langle\xi-\xi^{\prime}\right\rangle^{|s|}\left|\chi\left(\xi-\xi^{\prime}\right)\right| \frac{\left|\hat{f}\left(\xi^{\prime}\right)\right|}{\left\langle\xi^{\prime}\right\rangle^{s}} d \xi^{\prime} .
$$

The right hand side is the convolution of two L^{2}-functions. We can conclude with Young's convolution inequality.
1.4.2. Show that $g:=(1-\Delta)^{-1} \chi \Delta u \in H^{s+2}\left(\mathbb{R}^{n}\right)$.

The operator $(1-\Delta)^{-1}$ is continuous from $H^{s}\left(\mathbb{R}^{n}\right)$ onto $H^{s+2}\left(\mathbb{R}^{n}\right)$, since it is a Fourier multiplier of order -2 . This implies that g is in $H^{s+2}\left(\mathbb{R}^{n}\right)$.
1.5. Show that $g=(1-\Delta)^{-1}[\chi, \Delta] u-\left(1-(1-\Delta)^{-1}\right) \chi u$.

We can start from the right hand side

$$
\begin{aligned}
& (1-\Delta)^{-1}[\chi, \Delta] u-\left(1-(1-\Delta)^{-1}\right) \chi u=g-(1-\Delta)^{-1} \Delta(\chi u)-\left(1-(1-\Delta)^{-1}\right) \chi u \\
& \quad=g-(1-\Delta)^{-1}(\Delta-1)(\chi u)-(1-\Delta)^{-1} \chi u-\left(1-(1-\Delta)^{-1}\right) \chi u \\
& \quad=g+\chi u-\chi u=g .
\end{aligned}
$$

1.6. Explain why $R:=[\chi, \Delta]$ is a first-order differential operator.

This is just because $R=-2 \nabla \chi \cdot \nabla-\Delta \chi$ which is a differential operator of order 1 .
1.7. Let $\psi \in C_{c}^{\infty}(\Omega)$ be a non negative function which is equal to 1 on the ball $\{\xi ;|\xi| \leq 1\}$ and equal to 0 out of the ball $\{\xi ;|\xi| \leq 2\}$. Prove that the pseudo-differential operator $e(x, D):=\psi(D)+c(x, D)$ (where c is as in question 1.2) is an isomorphism of $H^{s}\left(\mathbb{R}^{n}\right)$ for all $s \in \mathbb{R}$.

The symbol of $e(x, D)$ is $e(x, \xi)=\psi(\xi)+1-\left(1+|\xi|^{2}\right)^{-1}$. We find that

$$
e(x, 0)=\psi(0)+1-1=1, \quad \lim _{|\xi| \longrightarrow+\infty} e(x, \xi)=0,
$$

as well as

$$
e(x, \xi) \geq 1-\left(1+|\xi|^{2}\right)^{-1}>0, \quad \forall \xi \neq 0
$$

It follows that

$$
\begin{equation*}
\exists(c, C) \in\left(\mathbb{R}_{+}^{*}\right)^{2} ; \quad 0<c \leq e(x, \xi) \leq C, \quad \forall \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

The symbol $e(x, \xi)$ is in $S_{1,0}^{0}$. This implies that the Fourier multiplier $e(x, D)$ acts continuously from $H^{s}\left(\mathbb{R}^{n}\right)$ into $H^{s}\left(\mathbb{R}^{n}\right)$.

From condition (1) - of ellipticity, we can define $e(x, \xi)^{-1} \in S_{1,0}^{0}$. The pseudo-differential operator $e(x, D)$ is invertible with inverse $e(x, D)^{-1}$ which acts continuously from $H^{s}\left(\mathbb{R}^{n}\right)$ into $H^{s}\left(\mathbb{R}^{n}\right)$.
1.8. Show that $\left.\chi u=e(x, D)^{-1}\left[(1-\Delta)^{-1}\right) R u-g+\psi(D)(\chi u)\right]$, and deduce from this relation that χu is in $H^{s_{0}+1}\left(\mathbb{R}^{n}\right)$.

From quastion 1.4, we have

$$
\left(1-(1-\Delta)^{-1}\right) \chi u=(1-\Delta)^{-1}[\chi, \Delta] u-g
$$

so that

$$
e(x, D)(\chi u)=(c(x, D)+\psi(D))(\chi u)=(1-\Delta)^{-1} R u-g+\psi(D)(\chi u)
$$

It suffices to compose on the left by $e(x, D)^{-1}$ to recover the expected formula. Then

$$
\left.\begin{array}{l}
u \in H^{s_{0}}\left(\mathbb{R}^{n}\right) \\
R \in O p\left(S_{1,0}^{1}\right)
\end{array}\right\} \quad \Longrightarrow \quad R u \in H^{s_{0}-1}\left(\mathbb{R}^{n}\right)
$$

This gives rise to

$$
\left.\begin{array}{l}
R u \in H^{s_{0}-1}\left(\mathbb{R}^{n}\right) \\
(1-\Delta)^{-1} \in O p\left(S_{1,0}^{-2}\right)
\end{array}\right\} \quad \Longrightarrow \quad(1-\Delta)^{-1} R u \in H^{s_{0}+1}\left(\mathbb{R}^{n}\right)
$$

On the other hand

$$
\left.\begin{array}{l}
\chi u \in H^{s_{0}}\left(\mathbb{R}^{n}\right) \\
\psi(D) \in O p\left(S_{1,0}^{-\infty}\right)
\end{array}\right\} \quad \Longrightarrow \quad \psi(D) u \in H^{+\infty}\left(\mathbb{R}^{n}\right)
$$

From question 1.3, we know already that $g \in H^{s+2}\left(\mathbb{R}^{n}\right)$. After summation, since $s_{0}<s$, there remains

$$
\chi u \in H^{\min \left(s_{0}+1,+\infty, s+2\right)}\left(\mathbb{R}^{n}\right)=H^{s_{0}+1}\left(\mathbb{R}^{n}\right)
$$

Concluding remarks. Due to the pde $\Delta u=f$ and the regularity assumption on the source term f, the regularity of u goes (locally) one step up, from $H_{l o c}^{s 0}(\Omega)$ to $H_{l o c}^{s 0+1}(\Omega)$. This information comes also from the ellipticity of the operator Δ. Refined (microlocal) versions of this principle do exist : they distinguish between the various directions ξ. If moreover we know that $f \in C^{\infty}(\Omega)$, then, by induction we recover that $u \in C^{\infty}(\Omega)$. This is called hypoellipticity, see this reference.

