

Microlocal Analysis

Correction of the CC2 on the *inversion of elliptic operators*

Documents are not allowed

Surname :

First name :

Let $n \in \mathbb{N}$ as well as m and m' in $\mathbb{R} \cup \{-\infty\}$. Given two symbols $a \in S^m \equiv S_{1,0}^m(\mathbb{R}^n)$ and $b \in S^{m'}$, we admit that the composition of Op(a) with Op(b) is a pseudo-differential operator whose symbol is in $S^{m+m'}$. More precisely

 $Op(a)Op(b) = Op(a\#b), \qquad a\#b = ab + r, \qquad ab \in S^{m+m'}, \qquad r \in S^{m+m'-1}.$

1. Take n = 1, $a = i\xi$ and b = x. What is r?

$$r(x,\xi) = 1.$$

We have $Op(a) = \partial_x$ and $Op(b) = x \times$ so that $Op(a)Op(b) = \partial_x(x \times \cdot) = x\partial_x + Id$ whose corresponding symbol is $ix\xi + 1$. Note that $a \in S^1$, $b \in S^0$ while $ab = ix\xi \in S^1$. As expected, we find that $r \in S^{1+0-1} \equiv S^0$. This is in accordance with the formula provided by the symbolic calculus since

$$a\#b(x,\xi) = \sum_{\alpha \in \mathbb{N}} \frac{1}{i^{\alpha} \alpha!} \partial_{\xi}^{\alpha} a(x,\xi) \partial_{x}^{\alpha} b(x,\xi) = (ab)(x,\xi) + \frac{1}{i} \partial_{\xi} a(x,\xi) \partial_{x} b(x,\xi)$$
$$= ix\xi + \frac{1}{i} i \times 1 = ix\xi + 1.$$

2. Take n = 1, $a = i\xi$ and b = x. What is the symbol of the adjoint of Op(a)Op(b)?

$$(a\#b)^*(x,\xi) = -ix\xi.$$

From $Op(a\#b) = \partial_x(x \times \cdot)$, an integration by parts furnishes $Op(a\#b)^* = -x\partial_x$ whose corresponding symbol is as indicated above. Note that we have

$$(a\#b)^*(x,\xi) = \sum_{\alpha \in \mathbb{N}} \frac{1}{i^{\alpha} \alpha!} \,\partial_{\xi}^{\alpha} \partial_{x}^{\alpha} \overline{a\#b}(x,\xi) = \overline{a\#b}(x,\xi) + \frac{1}{i} \,\partial_{x\xi}^2 \overline{a\#b}(x,\xi) \\ = (-ix\xi+1) + \frac{1}{i} \,(-i) = -ix\xi.$$

3. Let $a \in S^m$. We assume here that we can find some $b \in S^{-m}$ which is such that a # b - 1 is in the class $S^{-\infty}$.

3.1. Prove that $\exists R \in \mathbb{R}^*_+$; $|\xi| \ge R \implies |(ab)(x,\xi)| \ge 1/2$. By construction, we have

$$ab - 1 = (a \# b - 1) - r \in S^{-\infty} + S^{-1} \subset S^{-1}$$

and therefore

$$|(ab)(x,\xi) - 1| \le C (1 + ||\xi||)^{-1}.$$

In particular, for $R \leq \parallel \xi \parallel$ with R large enough, we have

$$|(ab)(x,\xi) - 1| \le \frac{1}{2} \implies \frac{1}{2} \le |a(x,\xi)| |b(x,\xi)|.$$

3.2. Prove that :

Ξ

$$\mathbb{B}(R,c) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+; \qquad |\xi| \ge R \implies c \left(1 + \|\xi\|\right)^m \le |a(x,\xi)|. \tag{1}$$

For $R \leq || \xi ||$, the value of $b(x,\xi)$ is not zero and, since $b \in S^{-m}$, we can find some $C \in \mathbb{R}^*_+$ such that

$$|b(x,\xi)| \le C (1+ ||\xi||)^{-m} \implies \frac{1}{C} (1+ ||\xi||)^m \le \frac{1}{|b(x,\xi)|}$$

and therefore we have (1) with c = 1/(2C).

4. Let $a \in S^m$. We assume here that we have the property (1) for some $R \in \mathbb{R}^*_+$. 4.1. Find $b_0 \in S^{-m}$ which is such that $Op(a) Op(b_0) = Id + \mathcal{R}_0$ with $\mathcal{R}_0 \in Op(S^{-1})$. Let $\chi \in C_0^{\infty}(\mathbb{R}^n)$ with $\chi \equiv 1$ in the ball B(0, 1]. Consider

$$b_0(x,\xi) = (1 - \chi(\xi/R))/a(x,\xi).$$

With (1), it is easy to infer that $b_0 \in S^{-m}$. On the other hand

 $Op(a) Op(b_0) = Op(a\#b_0) = Op(ab_0 + r_0) = Id - Op \chi(\xi/R) + Op(r_0), \quad r_0 \in S^{-1}.$ Just remark that

$$\mathcal{R}_0 := -Op\,\chi(\xi/R) + Op(r_0) \in Op(S^{-\infty}) + Op(S^{-1}) \subset Op(S^{-1}).$$

4.2. Find $b_1 \in S^{-m-1}$ which is such that $Op(a) Op(b_0+b_1) = Id + \mathcal{R}_1$ with $\mathcal{R}_1 \in Op(S^{-2})$. With b_0 as above, we have to seek b_1 in such a way that

 $Op(a) Op(b_0 + b_1) = Op(a) Op(b_0) + Op(a) Op(b_1) = Id + \mathcal{R}_1, \qquad \mathcal{R}_1 \in Op(S^{-2}).$

Interpreted in terms of symbols, this means that

 $ab_0 + r_0 + ab_1 + \tilde{r}_1 = 1 + r_1, \qquad r_0 \in S^{-1}, \quad \tilde{r}_1 \in S^{m-m-1-1} = S^{-2}, \quad r_1 \in S^{-2}.$ It suffices to adjust b_1 in such a way that $ab_0 + r_0 + ab_1 = 1$, that is

 $b_1 := (1 - \chi)(\xi/R) [(1/a) - b_0 - (r_0/a)] = (1 - \chi)(\xi/R) [(\chi(\xi/R) - r_0)/a] \in S^{-m-1}.$ Then, the computation of $a \# b_1$ yields some $\tilde{r}_1 \equiv r_1 \in S^{-2}.$