## Microlocal Analysis

Correction of the CC2 on the inversion of elliptic operators

Documents are not allowed

## Surname :

## First name :

Let $n \in \mathbb{N}$ as well as $m$ and $m^{\prime}$ in $\mathbb{R} \cup\{-\infty\}$. Given two symbols $a \in S^{m} \equiv S_{1,0}^{m}\left(\mathbb{R}^{n}\right)$ and $b \in S^{m^{\prime}}$, we admit that the composition of $O p(a)$ with $O p(b)$ is a pseudo-differential operator whose symbol is in $S^{m+m^{\prime}}$. More precisely

$$
O p(a) O p(b)=O p(a \# b), \quad a \# b=a b+r, \quad a b \in S^{m+m^{\prime}}, \quad r \in S^{m+m^{\prime}-1}
$$

1. Take $n=1, a=i \xi$ and $b=x$. What is $r$ ?

$$
r(x, \xi)=1
$$

We have $O p(a)=\partial_{x}$ and $O p(b)=x \times$ so that $O p(a) O p(b)=\partial_{x}(x \times \cdot)=x \partial_{x}+I d$ whose corresponding symbol is $i x \xi+1$. Note that $a \in S^{1}, b \in S^{0}$ while $a b=i x \xi \in S^{1}$. As expected, we find that $r \in S^{1+0-1} \equiv S^{0}$. This is in accordance with the formula provided by the symbolic calculus since

$$
\begin{aligned}
a \# b(x, \xi)=\sum_{\alpha \in \mathbb{N}} \frac{1}{i^{\alpha} \alpha!} \partial_{\xi}^{\alpha} a(x, \xi) \partial_{x}^{\alpha} b(x, \xi) & =(a b)(x, \xi)+\frac{1}{i} \partial_{\xi} a(x, \xi) \partial_{x} b(x, \xi) \\
& =i x \xi+\frac{1}{i} i \times 1=i x \xi+1
\end{aligned}
$$

2. Take $n=1, a=i \xi$ and $b=x$. What is the symbol of the adjoint of $O p(a) O p(b)$ ?

$$
(a \# b)^{*}(x, \xi)=-i x \xi
$$

From $O p(a \# b)=\partial_{x}(x \times \cdot)$, an integration by parts furnishes $O p(a \# b)^{*}=-x \partial_{x}$ whose corresponding symbol is as indicated above. Note that we have

$$
\begin{aligned}
(a \# b)^{*}(x, \xi)=\sum_{\alpha \in \mathbb{N}} \frac{1}{i^{\alpha} \alpha!} \partial_{\xi}^{\alpha} \partial_{x}^{\alpha} \overline{a \# b}(x, \xi) & =\overline{a \# b}(x, \xi)+\frac{1}{i} \partial_{x \xi}^{2} \overline{a \# b}(x, \xi) \\
& =(-i x \xi+1)+\frac{1}{i}(-i)=-i x \xi
\end{aligned}
$$

3. Let $a \in S^{m}$. We assume here that we can find some $b \in S^{-m}$ which is such that $a \# b-1$ is in the class $S^{-\infty}$.
3.1. Prove that: $\exists R \in \mathbb{R}_{+}^{*} ; \quad|\xi| \geq R \Longrightarrow|(a b)(x, \xi)| \geq 1 / 2$.

By construction, we have

$$
a b-1=(a \# b-1)-r \in S^{-\infty}+S^{-1} \subset S^{-1}
$$

and therefore

$$
|(a b)(x, \xi)-1| \leq C(1+\|\xi\|)^{-1}
$$

In particular, for $R \leq\|\xi\|$ with $R$ large enough, we have

$$
|(a b)(x, \xi)-1| \leq \frac{1}{2} \quad \Longrightarrow \quad \frac{1}{2} \leq|a(x, \xi)||b(x, \xi)|
$$

3.2. Prove that :

$$
\begin{equation*}
\exists(R, c) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} ; \quad|\xi| \geq R \quad \Longrightarrow \quad c(1+\|\xi\|)^{m} \leq|a(x, \xi)| . \tag{1}
\end{equation*}
$$

For $R \leq\|\xi\|$, the value of $b(x, \xi)$ is not zero and, since $b \in S^{-m}$, we can find some $C \in \mathbb{R}_{+}^{*}$ such that

$$
|b(x, \xi)| \leq C(1+\|\xi\|)^{-m} \quad \Longrightarrow \quad \frac{1}{C}(1+\|\xi\|)^{m} \leq \frac{1}{|b(x, \xi)|},
$$

and therefore we have (1) with $c=1 /(2 C)$.
4. Let $a \in S^{m}$. We assume here that we have the property (1) for some $R \in \mathbb{R}_{+}^{*}$.
4.1. Find $b_{0} \in S^{-m}$ which is such that $O p(a) O p\left(b_{0}\right)=I d+\mathcal{R}_{0}$ with $\mathcal{R}_{0} \in O p\left(S^{-1}\right)$.

Let $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\chi \equiv 1$ in the ball $B(0,1]$. Consider

$$
b_{0}(x, \xi)=(1-\chi(\xi / R)) / a(x, \xi) .
$$

With (1), it is easy to infer that $b_{0} \in S^{-m}$. On the other hand

$$
O p(a) O p\left(b_{0}\right)=O p\left(a \# b_{0}\right)=O p\left(a b_{0}+r_{0}\right)=I d-O p \chi(\xi / R)+O p\left(r_{0}\right), \quad r_{0} \in S^{-1}
$$

Just remark that

$$
\mathcal{R}_{0}:=-O p \chi(\xi / R)+O p\left(r_{0}\right) \in O p\left(S^{-\infty}\right)+O p\left(S^{-1}\right) \subset O p\left(S^{-1}\right)
$$

4.2. Find $b_{1} \in S^{-m-1}$ which is such that $O p(a) O p\left(b_{0}+b_{1}\right)=I d+\mathcal{R}_{1}$ with $\mathcal{R}_{1} \in O p\left(S^{-2}\right)$.

With $b_{0}$ as above, we have to seek $b_{1}$ in such a way that

$$
O p(a) O p\left(b_{0}+b_{1}\right)=O p(a) O p\left(b_{0}\right)+O p(a) O p\left(b_{1}\right)=I d+\mathcal{R}_{1}, \quad \mathcal{R}_{1} \in O p\left(S^{-2}\right) .
$$

Interpreted in terms of symbols, this means that

$$
a b_{0}+r_{0}+a b_{1}+\tilde{r}_{1}=1+r_{1}, \quad r_{0} \in S^{-1}, \quad \tilde{r}_{1} \in S^{m-m-1-1}=S^{-2}, \quad r_{1} \in S^{-2} .
$$

It suffices to adjust $b_{1}$ in such a way that a $b_{0}+r_{0}+a b_{1}=1$, that is

$$
b_{1}:=(1-\chi)(\xi / R)\left[(1 / a)-b_{0}-\left(r_{0} / a\right)\right]=(1-\chi)(\xi / R)\left[\left(\chi(\xi / R)-r_{0}\right) / a\right] \in S^{-m-1} .
$$

Then, the computation of $a \# b_{1}$ yields some $\tilde{r}_{1} \equiv r_{1} \in S^{-2}$.

