

Microlocal Analysis

CC2 on pseudo-differential operators, the 18/11/2022 (45mn)

Documents are not allowed

Surname :

First name :

We work on \mathbb{R}^n . We consider the Laplace operator $\Delta := \sum_{i=1}^n \frac{\partial^2}{\partial_{x_i}^2}$.

1.1. What is the symbol $a(x,\xi)$ that is associated to the action of the operator $1 - \Delta$ through the relation $1 - \Delta = op(a) = a(x, D)$.

 $a(x,\xi) =$

1.2. Determine the symbol $b(x,\xi)$ of the pseudo-differential operator allowing to satisfy the relation b(x,D) a(x,D) = Id. The operator b(x,D) is denoted by $(1-\Delta)^{-1}$. Indicate on the right its symbol class.

$$b(x,\xi) = b(x,D) \in S$$

1.3. Determine the symbol $c(x,\xi)$ of the pseudo-differential operator $1 - (1 - \Delta)^{-1}$. Indicate on the right its symbol class.

$$c(x,\xi) = c(x,D) \in S$$

1.4. Let Ω be a relatively compact open subset of \mathbb{R}^n . Fix $s \in \mathbb{R}$ and $f \in H^s(\Omega)$. Given some $s_0 < s$, we consider a distribution $u \in H^{s_0}(\Omega)$ which is such that $\Delta u = f$.

1.4.1. We recall Peetre's inequality :

$$\langle \xi' \rangle^{\tilde{s}} \langle \xi \rangle^{-\tilde{s}} \le 2^{|\tilde{s}|} \langle \xi - \xi' \rangle^{|s|}, \qquad \forall (\tilde{s}, \xi, \xi') \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n.$$

We select a cutoff function $\chi \in C_c^{\infty}(\Omega)$. Show that $\chi \Delta u \in H^s(\mathbb{R}^n)$.

1.4.2. Show that $g := (1 - \Delta)^{-1} \chi \Delta u \in H^{s+2}(\mathbb{R}^n)$.

 \implies T.S.V.P.

1.5. Prove that $g = (1 - \Delta)^{-1} [\chi, \Delta] u - (1 - (1 - \Delta)^{-1}) \chi u$.

1.6. Explain why $R := [\chi, \Delta]$ is a first-order differential operator.

1.7. Let $\psi \in C_c^{\infty}(\Omega)$ be a non negative function which is equal to 1 on the ball $\{\xi; |\xi| \leq 1\}$ and equal to 0 out of the ball $\{\xi; |\xi| \leq 2\}$. Prove that the pseudo-differential operator $e(x, D) := \psi(D) + c(x, D)$ (where c is as in question 1.2) is an isomorphism of $H^s(\mathbb{R}^n)$ for all $s \in \mathbb{R}$.

1.8. Show that $\chi u = e(x, D)^{-1} [(1 - \Delta)^{-1}) Ru - g + \psi(D) (\chi u)]$, and deduce from this relation that χu is in $H^{s_0+1}(\mathbb{R}^n)$.