Microlocal Analysis

CC2 on pseudo-differential operators, the 18/11/2022 (45 mn)

Documents are not allowed

Surname :

First name :

We work on \mathbb{R}^{n}. We consider the Laplace operator $\Delta:=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial_{x_{i}}^{2}}$.
1.1. What is the symbol $a(x, \xi)$ that is associated to the action of the operator $1-\Delta$ through the relation $1-\Delta=o p(a)=a(x, D)$.

$$
a(x, \xi)=
$$

1.2. Determine the symbol $b(x, \xi)$ of the pseudo-differential operator allowing to satisfy the relation $b(x, D) a(x, D)=I d$. The operator $b(x, D)$ is denoted by $(1-\Delta)^{-1}$. Indicate on the right its symbol class.

$$
b(x, \xi)=\quad b(x, D) \in S
$$

1.3. Determine the symbol $c(x, \xi)$ of the pseudo-differential operator $1-(1-\Delta)^{-1}$. Indicate on the right its symbol class.

$$
c(x, \xi)=\quad c(x, D) \in S
$$

1.4. Let Ω be a relatively compact open subset of \mathbb{R}^{n}. Fix $s \in \mathbb{R}$ and $f \in H^{s}(\Omega)$. Given some $s_{0}<s$, we consider a distribution $u \in H^{s_{0}}(\Omega)$ which is such that $\Delta u=f$.
1.4.1. We recall Peetre's inequality :

$$
\left\langle\xi^{\prime}\right\rangle^{\tilde{s}}\langle\xi\rangle^{-\tilde{s}} \leq 2^{|\tilde{s}|}\left\langle\xi-\xi^{\prime}\right\rangle^{|s|}, \quad \forall\left(\tilde{s}, \xi, \xi^{\prime}\right) \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} .
$$

We select a cutoff function $\chi \in C_{c}^{\infty}(\Omega)$. Show that $\chi \Delta u \in H^{s}\left(\mathbb{R}^{n}\right)$.
1.4.2. Show that $g:=(1-\Delta)^{-1} \chi \Delta u \in H^{s+2}\left(\mathbb{R}^{n}\right)$.
1.5. Prove that $g=(1-\Delta)^{-1}[\chi, \Delta] u-\left(1-(1-\Delta)^{-1}\right) \chi u$.
1.6. Explain why $R:=[\chi, \Delta]$ is a first-order differential operator.
1.7. Let $\psi \in C_{c}^{\infty}(\Omega)$ be a non negative function which is equal to 1 on the ball $\{\xi ;|\xi| \leq 1\}$ and equal to 0 out of the ball $\{\xi ;|\xi| \leq 2\}$. Prove that the pseudo-differential operator $e(x, D):=\psi(D)+c(x, D)$ (where c is as in question 1.2) is an isomorphism of $H^{s}\left(\mathbb{R}^{n}\right)$ for all $s \in \mathbb{R}$.
1.8. Show that $\left.\chi u=e(x, D)^{-1}\left[(1-\Delta)^{-1}\right) R u-g+\psi(D)(\chi u)\right]$, and deduce from this relation that χu is in $H^{s_{0}+1}\left(\mathbb{R}^{n}\right)$.

