

Microlocal Analysis

CC2 on the inversion of elliptic operators, the 12/11/2021 (30mn)

Documents are not allowed

Surname :

First name :

Let $n \in \mathbb{N}$ as well as m and m' in $\mathbb{R} \cup \{-\infty\}$. Given two symbols $a \in S^m \equiv S_{1,0}^m(\mathbb{R}^n)$ and $b \in S^{m'}$, we admit that the composition of Op(a) with Op(b) is a pseudo-differential operator whose symbol is in $S^{m+m'}$. More precisely

 $Op(a)Op(b) = Op(a\#b), \qquad a\#b = ab + r, \qquad ab \in S^{m+m'}, \qquad r \in S^{m+m'-1}.$

1. Take n = 1, $a = i\xi$ and b = x. What is r?

$$r(x,\xi) =$$

2. Take n = 1, $a = i\xi$ and b = x. What is the symbol of the adjoint of Op(a)Op(b)?

 $(a \# b)^*(x,\xi) =$

3. Let $a \in S^m$. We assume here that we can find some $b \in S^{-m}$ which is such that a # b - 1 is in the class $S^{-\infty}$.

3.1. Prove that : $\exists R \in \mathbb{R}^*_+$; $|\xi| \ge R \implies |(ab)(x,\xi)| \ge 1/2$.

 $T.S.V.P. \implies$

3.2. Prove that :

$$\exists (R,c) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+; \qquad |\xi| \ge R \implies c \left(1 + \|\xi\|\right)^m \le |a(x,\xi)|. \tag{1}$$

4. Let $a \in S^m$. We assume that we have the property (??) for some $R \in \mathbb{R}^*_+$. 4.1. Find $b_0 \in S^{-m}$ which is such that $Op(a) Op(b_0) = Id + \mathcal{R}_0$ with $\mathcal{R}_0 \in Op(S^{-1})$. Justify the answer.

4.2. Find $b_1 \in S^{-m-1}$ which is such that $Op(a) Op(b_0+b_1) = Id + \mathcal{R}_1$ with $\mathcal{R}_1 \in Op(S^{-2})$.