Microlocal Analysis

CC2 on the inversion of elliptic operators, the 12/11/2021 (30mn)

Documents are not allowed

Surname :

First name :

Let $n \in \mathbb{N}$ as well as m and m^{\prime} in $\mathbb{R} \cup\{-\infty\}$. Given two symbols $a \in S^{m} \equiv S_{1,0}^{m}\left(\mathbb{R}^{n}\right)$ and $b \in S^{m^{\prime}}$, we admit that the composition of $O p(a)$ with $O p(b)$ is a pseudo-differential operator whose symbol is in $S^{m+m^{\prime}}$. More precisely

$$
O p(a) O p(b)=O p(a \# b), \quad a \# b=a b+r, \quad a b \in S^{m+m^{\prime}}, \quad r \in S^{m+m^{\prime}-1}
$$

1. Take $n=1, a=i \xi$ and $b=x$. What is r ?

$$
r(x, \xi)=
$$

2. Take $n=1, a=i \xi$ and $b=x$. What is the symbol of the adjoint of $O p(a) O p(b)$? $(a \# b)^{*}(x, \xi)=$
3. Let $a \in S^{m}$. We assume here that we can find some $b \in S^{-m}$ which is such that $a \# b-1$ is in the class $S^{-\infty}$.
3.1. Prove that : $\exists R \in \mathbb{R}_{+}^{*} ; \quad|\xi| \geq R \Longrightarrow|(a b)(x, \xi)| \geq 1 / 2$.
3.2. Prove that :

$$
\begin{equation*}
\exists(R, c) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} ; \quad|\xi| \geq R \quad \Longrightarrow \quad c(1+\|\xi\|)^{m} \leq|a(x, \xi)| . \tag{1}
\end{equation*}
$$

4. Let $a \in S^{m}$. We assume that we have the property (??) for some $R \in \mathbb{R}_{+}^{*}$.
4.1. Find $b_{0} \in S^{-m}$ which is such that $O p(a) O p\left(b_{0}\right)=I d+\mathcal{R}_{0}$ with $\mathcal{R}_{0} \in O p\left(S^{-1}\right)$. Justify the answer.
4.2. Find $b_{1} \in S^{-m-1}$ which is such that $O p(a) O p\left(b_{0}+b_{1}\right)=I d+\mathcal{R}_{1}$ with $\mathcal{R}_{1} \in O p\left(S^{-2}\right)$.
