Microlocal Analysis

Correction of the CC1 (the $19 / 11 / 2021$)

Documents are not allowed

Surname :

First name :

Let $m \in \mathbb{R}$. We consider a symbol $a \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathbb{C}\right)$ which is in the class $S^{m} \equiv S_{1,0}^{m}$ of symbols of order m.

1. Recall the definition of the symbol class S^{m}.

$$
\begin{aligned}
S^{m}=\left\{a \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} ; \mathbb{C}\right) ;\right. & \forall(\alpha, \beta) \in \mathbb{N}^{n} \times \mathbb{N}^{n}, \quad \exists C_{\alpha, \beta} \in \mathbb{R}_{+} ; \quad \forall(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \\
& \left.\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}(1+\|\xi\|)^{m-|\beta|}\right\}
\end{aligned}
$$

2. We assume that we can find $\tilde{m}<m$ and $R \in \mathbb{R}_{+}^{*}$ which are such that
$\forall(\alpha, \beta) \in \mathbb{N}^{n} \times \mathbb{N}^{n}, \quad \exists C_{\alpha, \beta} \in \mathbb{R}_{+} ; \quad R \leq\|\xi\| \Longrightarrow\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}(1+\|\xi\|)^{\tilde{m}-|\beta|}$.
Prove that a is in $S^{\tilde{m}}$.
It suffices to obtain the bound for $|\xi| \leq R$. We already know that

$$
\forall(\alpha, \beta) \in \mathbb{N}^{n} \times \mathbb{N}^{n}, \quad \exists \tilde{C}_{\alpha, \beta} \in \mathbb{R}_{+} ; \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq \tilde{C}_{\alpha, \beta}(1+\|\xi\|)^{\tilde{m}-|\beta|+m-\tilde{m}}
$$

which implies that

$$
|\xi| \leq R \Longrightarrow\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq \tilde{C}_{\alpha, \beta}(1+R)^{m-\tilde{m}}(1+\|\xi\|)^{\tilde{m}-|\beta|}
$$

This yields the expected bound with $C_{\alpha, \beta}=\tilde{C}_{\alpha, \beta}(1+R)^{m-\tilde{m}}$.
3. We assume in this question that $m<-n$.
3.1 Show that we can find some $K \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that

$$
\forall u \in \mathcal{S}\left(\mathbb{R}^{n}\right), \quad o p(a) u(x):=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) d \xi=\int_{\mathbb{R}^{n}} K(x, y) u(y) d y
$$

By construction, we have

$$
K(x, y)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} a(x, \xi) d \xi
$$

Since $n+m-1<-1$, this yields

$$
\begin{aligned}
|K(x, y)| \leq \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}|a(x, \xi)| d \xi & \leq \frac{C_{0,0}}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}(1+\|\xi\|)^{m} d \xi \\
& \leq \frac{C_{0,0}}{(2 \pi)^{n}} \int_{0}^{+\infty}(1+r)^{m} r^{n-1} d r<+\infty .
\end{aligned}
$$

3.2. Let $\alpha \in \mathbb{N}^{n}$. Prove that $(x-y)^{\alpha} K(x, y) \in L^{\infty}\left(\mathbb{R}^{n}\right)$.

Using integration by parts in ξ, we get

$$
(x-y)^{\alpha} K(x, y)=\frac{(-i)^{\alpha}}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}(i(x-y))^{\alpha} e^{i(x-y) \cdot \xi} a(x, \xi) d \xi=\frac{i^{\alpha}}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} \partial_{\xi}^{\alpha} a(x, \xi) d \xi .
$$

Since $\partial_{\xi}^{\alpha} a \in S^{m-|\alpha|} \subset S^{m}$ with $m<-n$, the same argument as above yields the expected bound.
3.3. Show that, for all $p \in \mathbb{N}^{*}$, the map $o p(a): L^{p}\left(\mathbb{R}^{n}\right) \longrightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is a bounded operator.

From question 3.2, we can infer that

$$
\forall N \in \mathbb{N}, \quad|K(x, y)| \leq C_{N}(1+|x-y|)^{-N} .
$$

This guarantees that

$$
|o p(a) u(x)| \leq C_{N}(1+|x|)^{-N} *|u| .
$$

For $N>n$, the function $(1+|x|)^{-N}$ belongs to L^{1}. By Young's inequality $\left(L^{1} * L^{p} \subset L^{p}\right)$, we get the result.
4. Let A, B and $C \not \equiv 0$ three self-adjoint operators on a Hilbert space \mathcal{H}. We assume that $[A, B]=i I d$ and $[A, C]=0$. Can we assert that $[B, C] \not \equiv 0$? Justify the answer.

The reply is NO. Just take

$$
\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right), \quad A=i \partial_{x_{1}}, \quad B=x_{1} \times, \quad C=i \partial_{x_{2}}
$$

