

Microlocal Analysis

CC1 on the continuity of pseudo-differential operators, the 29/10/2021 (30mn)

Documents are not allowed

Surname :

First name :

Let $n \in \mathbb{N}^*$ and $m \in \mathbb{R}$. We consider a symbol $a \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n; \mathbb{C})$ which is in the class $S^m \equiv S_{1,0}^m$ of symbols of order m.

1. Recall the definition of the symbol class S^m .

$$S^m =$$

2. We assume that we can find $\tilde{m} < m$ and $R \in \mathbb{R}^*_+$ which are such that

 $\forall (\alpha, \beta) \in \mathbb{N}^n \times \mathbb{N}^n, \quad \exists C_{\alpha, \beta} \in \mathbb{R}_+; \quad R \leq \parallel \xi \parallel \Longrightarrow \ |\partial_x^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)| \leq C_{\alpha, \beta} \left(1 + \parallel \xi \parallel\right)^{\tilde{m} - |\beta|}.$

```
Prove that a is in S^{\tilde{m}}.
```

- **3.** We assume in this question that m < -n.
- **3.1** Show that we can find some $K \in L^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ such that

$$\forall u \in \mathcal{S}(\mathbb{R}^n), \qquad op(a)u(x) := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} a(x,\xi) \,\hat{u}(\xi) \, d\xi = \int_{\mathbb{R}^n} K(x,y) \, u(y) \, dy.$$

 \implies T.S.V.P.

3.2. Let $\alpha \in \mathbb{N}^n$. Prove that $(x - y)^{\alpha} K(x, y) \in L^{\infty}(\mathbb{R}^n)$.

3.3. Show that, for all $p \in \mathbb{N}^*$, the map $op(a) : L^p(\mathbb{R}^n) \longrightarrow L^p(\mathbb{R}^n)$ is a bounded operator.

4. Let A, B and $C \neq 0$ three self-adjoint operators on a Hilbert space \mathcal{H} . We assume that [A, B] = Id and [A, C] = 0. Can we assert that $[B, C] \neq 0$? Justify the answer.