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0. Introduction

We start by explaining the objectives and the motivations. Then, we describe at length the
historical context.

0.1. Purpose. Be aware of the quantum harmonic oscillator in its algebraic facets (manipulation
of eigenvalues issued from operators satisfying canonical commutation relations) and analytic
aspects (study of eigenfunctions obtained by looking at the Schrödinger representation).

0.2. Motivations. A dynamical system moving in a potential near a stable equilibrium position,
that is near a minimum of the potential, can be modeled by the harmonic oscillator, at least for
small oscillations. The picture below shows:

- the comparison for a diatomic molecule between the (blue) curve corresponding to the "real"
potential (represented by the Morse potential) and the (green) curve for the harmonic oscillator;

- the differences between the (quantum) energy levels that are associated to both cases.
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The quantum harmonic oscillator appears in condensed matter physics in order to describe the
vibrations of a crystal structure in the form of solide cristallin sous la forme de phonons. Above
all, it is a basic model to understand how the quanta of energy operate during radiation. We
can refer to the photons of electromagnetism but also to the whole set of elementary particles in
the standard model.

0.3. Historical context. The harmonic oscillator was first used for the description of different
types of pendulums (paragraph 0.4). Its quantum version was exploited to explain the emission
spectrum of atoms. Then, it has played an essential role in the quantum formulation of the
interactions between radiations and matter, in quantum electrodynamics (paragraph 1.1) and
then in quantum field theory.

0.4. The spring-mass system. In classical mechanics, a particle of position q ∈ Rd and mass
m moves in Galilean reference frame according to the fundamental principle of dynamics (the
well-known Newton’s laws of motion):

The change of motion of an object is proportional to the force ~F impressed and
it is made in the direction of the straight line in which the force is impressed

(p = mq̇ = ~F )

In the case of a conservative force coming from a potential V (q), we obtain the canonical equations
of Hamilton:

(0.1)
{
q̇ = p/m = ∇pH,
ṗ = −∇qV (q) = −∇qH,

which imply the hamiltonian

H(q, p) := V (q) +
|p|2

2m
.
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Near the equilibrium position (say placed at the origin q = 0) in which ∇qV (0) = 0, we can
approximate the potential function by its Taylor expansion:

V (q) = V (0) +
1

2
tqD2

qV (0)q + o(|q|2).

Near a non degenerate minimum, the quadratic form associated with D2
qV (0) is positive definite.

At first approximation, we can replace V (q) by its Taylor expansion (up to the order two). In
particular for the horizontal spring-mass system without damping (d = 1), we ecover V (q) =
kq2/2 where k is the spring’s stiffness.

For such a choice, the solutions of (0.1) satisfy:

(0.2) q̈ + ω2
0 q = 0, ω0 :=

√
k/m.

The solutions which are issued (with zero speed) from the position q0 at the time t = 0 have
the form q(t) = q0 cos(

√
mk t). The trajectories drawn in position (after projection according

to q) or in the phase space (in both p and q) look like respectively as in the pictures on the left
(oscillations) or on the right (concentric circles in the phase portrait):

To conclude this introduction, it is worth emphasizing that the previsions provided by the quan-
tum harmonic oscillator are in accordance with experimental phenomena among which we can
mention:

- the Lamb shift which was not forecast by Dirac and which was first computed by H. Bethe.
It is due to the interaction between the quantum fluctuations of the vacuum and the electron;

- the Casimir effect, see [4]-paragraph 2.2.4.
This theory is at the root of a promising research field, quantum optics, which has been rewarded
in recent years by Nobel Prizes in Physics for S. Haroche, D. Wineland, R. J. Glauber, C. Cohen-
Tannoudji and also recently A. Aspect (2022).

1. The quantum harmonic oscillator

We start with preliminary considerations.
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1.1. Towards a quantum model. The case of a stable minimum is quite common in quantum
mechanics because, at low temperatures, the particles tend to go near their equilibrium position,
which is the position having the lower energy. As already explained, the (first) quantization of
the classical hamiltonian replaces the variables q and p by the position operator Q = q× and the
impulsion operator P = −i~∂q which satisfy the canonical commutation relation [P,Q] = −i~ Id.
By this way, we find the hamiltonian operator:

(1.1) H := (Q2 + P 2)/2.

From there, the equation which comes to replace (0.2) is the Schrödinger equation:

(1.2) 2 i ~ ∂tψ = ~ (−∂2q + q2)ψ.

The model (1.2) which has been obtained by analogy with (0.2) is called the quantum harmonic
oscillator. It describes the time evolution of an isolated quantum particle. For the sake of
simplicity, we will work in space dimension 1 and with the normalized version (that is with ~ = 1).
But keep in mind that the scales are essential to perform ultimately physical interpretations.

Remark 1 (Return to Ehrenfest’s theorem). We can associate with (1.2) initial data chosen in
the form of Gaussian wave packets:

ψ(0, x) = ψ0(x) :=
1

(π σ2)1/4
exp
(
i
p0 x

~

)
exp
(
−(x− x0)2

2σ2

)
, (x0, p0, σ) ∈ R2 × R∗+.

The mean values 〈Q〉(0) and 〈P 〉(0) of the observables Q and P tested again the state ψ0 are:

〈Q〉(0) = 〈ψ0, Qψ0〉 =

∫
R
x |ψ0(x)|2 dx = x0, 〈P 〉(0) = 〈ψ0, Pψ0〉 = i~

∫
R
p ψ̄0(x)ψ′0(x) dx = p0.

We can prove, for instance by computing the kernel of the propagator, that the solution of (1.2)
stays at all times t ∈ R∗+ a gaussian (with parameters xt, pt and σ). To determine it, it suffices
to give access to

xt := 〈Q〉(t), pt := 〈P 〉(t).
A very practical way to achieve this is Ehrenfest’s theorem. Indeed, in the case of a the quadratic
energy (1.1), we find that 〈V ′(Q)〉 = 〈Q〉 so that:{

ẋt = pt/m,
ṗt = −qt.

The motion of the mean values is then the one of a classical particle around which the gaussian
states propagate without deformation (see [3] for simulations).

The focus on (1.2) dates back to the works of the britanish physicist P. Dirac who, in the 1920s,
was the first to establish the rate of spontaneous emission. The use of equation (1.2) allows to
conceptualize the interaction between radiation and matter. In particular, P. Dirac will describe
the electromagnetic field (see [4]-paragraph 2.2.4 for further precisions) by the help of a set of
discrete harmonic oscillators (indexed by wave vectors) and by associating to the particles the
ladder operators:

a := (Q+ iP )/
√

2, lowering operator,
c := a∗ = (Q− iP )/

√
2, raising operator.

These operators lead to a decomposition of H as indicated below.

Lemma 2. The operator H can be written as H = N + (Id/2) where N := ca = a∗a is called
the particle number operator.

Proof. By definition:

H =
1

2
(Q− iP )(Q+ iP )− i

2
[Q,P ] = a∗a− i

2
× i Id = N + (Id/2).

�
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The operator H appears as a symmetric operator satisfying (for all function ψ of class C∞ with
compact support):

(1.3) 〈ψ,Hψ〉 =‖ aψ ‖2 +
1

2
‖ ψ ‖2≥ 1

2
‖ ψ ‖2 .

This is an unbounded operator on H = L2(R). It becomes self-adjoint on a suitable domain.
We can refer to [1]-paragraphs 2.6.3 and 6.2.1 as well as to [5]-paragraph 12 for all possible
characterizations of the domain of H. The following choice is appropriate:

DomH =
{
ψ ∈ L2(R) ; ∂qψ ∈ L2(R), ∂2qqψ ∈ L2(R), q2 ψ ∈ L2(R)

}
.

Since H is self-adjoint, its spectrum σ(H) is real [1,7]. The same applies to its ponctual spectrum
σp(H). Moreover, from the lower bound (1.4), we can assert that:

(1.4) σp(H) ⊂ σ(H) ⊂ [1/2,+∞[.

The elements λ of σp(H) can be interpreted as quanta of energy. Indeed, the third postulate
of quantum mechanics asserts that these are the only mesurable energies. Hence the need of
identifying all eigenvalues λ of the operator H as well as all eigenfunctions ψλ of H. We denote
by Eλ the eigenspace of H associated with λ. It should be borne in mind that the equation (1.2)
has special solutions given by:

(1.5) ψ(t) = e−iλt ψλ, ∀ψλ ∈ Eλ :=
{
ψ ∈ DomH ; (H − λId)ψ = 0

}
.

Remark 3 (Stationnary states). Physically, the wave functions ψ and µψ for µ ∈ C∗ represent
the same physical state. What matters is the probability density induced by the function ψ, the
one which is obtained by normalizing ψ in L2(R). The vector ψ must therefore be interpreted as
an element of the projective Hilbert space P (H). Seen in this light, the rotation of ψλ observed
when the time evolves at the level of (1.5) has no physical effect. This is why it is sometimes
said that the solutions described by (1.5) are stationary states.
Besides, along this line, we can observe that, for the quantum states ψ obtained at the level of
(1.5), the mean value of the observable A ∈ L(H) does not change since

〈ψ(t)|A|ψ(t)〉 = 〈e−iλt ψλ|A|e−iλt ψλ〉 = 〈ψλ|A|ψλ〉.

First and foremost, let us begin by checking that the lower bound 1/2, which may be achievable
in view of (1.4), is indeed in σp(H). To this end, we try to identify the set of corresponding
eigenvectors ψ0. In view of Lemma 2, this amounts to solve

(−∂q + q)(∂q + q)ψ0 = 0, ψ ∈ DomH,

which implies that

〈ψ0, (−∂q + q)(∂q + q)ψ0〉 = 〈(∂q + q)ψ0, (∂q + q)ψ0〉 =‖ (∂q + q)ψ0 ‖2L2(R)= 0

or equivalently that

(1.6) (∂q + q)ψ0 = 0.

The functions ψ0(q) = Ce−q
2/2 with C ∈ C are (by Cauchy-Lipschitz theorem) the only solutions

of (1.6). And they are in DomH. Thus, they can be selected.

(1.7) The eigenspace E1/2 that is associated with the eigenvalue 1/2 is of dimension one.

The eigenspace E1/2 is spanned by a gaussian which is called the ground state because it corre-
sponds to the state having the minimal energy. In quantum physics, the vacuum energy is never
zero (it is 1/2 in dimensionless units) !

Remark 4. The classical situation is quite different. Indeed, a spring placed in the equilibrium
position with a zero speed inherits a total energy which is equal to zero. The above phenomenon is
remarkable. It is at the origin of the quantum fluctuation which manifests itself as the spontaneous
creation of a pair of virtual particles made of a particle and its corresponding antiparticle. The
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reader can find in [2]-paragraph 5.1.2 some interesting comparison between the classical and
quantum configurations .

The purpose of the rest of this section is to show that the use of the functions ψλ gives access to a
complete spectral decomposition of H. In this perspective, the theorem of Stone Von Neumann
is instructive because it claims that we can achieve the spectral study of H, knowing that the
Heisenberg and Schrödinger approaches are equivalent. Thus, the information provided by the
algebraic (Paragraph 1.2) and analytical (Paragraph 1.3) methods complement each other to
furnish a global vision. Now, some difficulties are easier or faster to deal with on one side than
the other. The algebraic approach presented in Subsection 1.2 below is not sufficient to close the
subject. We also need the analytical viewpoint. We will underline the arguments which become
simpler with the analytical perspective by the mention An? with ? ∈ N∗.

1.2. The algebraic approach. The matter is to initiate the spectral discussion by looking at
the position operator Q = q× and at the impulsion operator P = −i∂q only through the algebraic
relations:

(1.8) P = P ∗, Q = Q∗, H = (Q2 + P 2)/2, [P,Q] = −i Id
We do not specify the Hilbert spaces H on which acts H, and we skip (for the moment) questions
related to the choice of domains (which are however pointed by An?).
An1: We complete (1.8) by adding the preliminary condition (1.7), namely:

(1.9) dimE1/2 = dim ker (H − 1/2) = 1.

According to Lemma 2, it is equivalent to study H (modulo the soustraction of 1/2) or the
properties of the particle number operator N . The condition (1.9) is the same as dim ker N = 1.
The eigenspace of N is generated by a vector ψ0 6= 0 (with ψ0 in the domain of H). Since

0 = 〈ψ0|Nψ0〉 = 〈aψ0|aψ0〉 =‖ aψ0 ‖2,
this vector ψ0 is also in the kernel of a. Because ker a ⊂ kerN , the kernel of a is of dimension
one, and it is spanned by ψ0.

Lemma 5 (The canonical commutation relation interpreted in terms of c and a). We find that
[a, c] = Id. More generally, for all n ∈ N∗, we have:

(1.10) [a, cn] = ncn−1.

Proof. Elementary computations furnish

[a, c] =
1

2
[Q+ iP,Q− iP ] =

i

2
[P,Q]− i

2
[Q,P ] = Id.

Suppose that (1.10) is verified for n. Then

[a, cn+1] = [a, cn] c+ cn [a, c] = ncn−1 c+ cn c = (n+ 1)cn,

which shows the result by induction.
�

Lemma 6. The vectors ψn := cn ψ0 with n ∈ N, sometimes just denoted by |n〉, are eigenvectors
of N associated with the eigenvalues n. They are mutually orthogonal.

An2: Nothing guarantees that the ψn - and in particulier ψ0 - are in the domain of N . This
hypothesis, which is here implicitly viewed as being satisfied, can be verified by analysis.
Proof. By definition of ψ0, this is true for n = 0. We statrt by proving the relations:

(1.11) [N, a] = [c, a]a = −a, [N, c] = −c[c, a] = c.

Then, we proceed by induction. Knowing that N ψn = nψn, we can recover that

N ψn+1 = [N, c]ψn + cN ψn = c ψn + n cψn = (n+ 1)ψn+1,
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and so on. Besides, for n 6= m, we have

〈ψn, Nψm〉 = m 〈ψn, ψm〉 = 〈N∗ψn, ψm〉 = 〈Nψn, ψm〉 = n 〈ψn, ψm〉.
For m 6= n, this is possible only if 〈ψn, ψm〉 = 0.

�

The operator c is qualified as raising because it allows to reveals from the fundamental state ψ0

the nth quantum level of energy by successive jumps.

Lemma 7 (Integer spectrum). The operator N has no eigenvector out of N.

Proof. Assume that λ 6∈ N is an eigenvalue of N associated with the eigenvector ψλ 6= 0. Since
N = a∗a is positive, we have necessarily λ > 0. From (1.11), we find that

N aψλ = [N, a]ψλ + aNψλ = (λ− 1) aψλ.

We know that aψλ 6= 0 otherwise ψλ = Cψ0 so that λ = 0 which is a contradiction. We can
iterate this argument.
An3: The above proof requires to know that the successive aψλ, a2ψλ, · · · are indeed in the
domain of a. Again, this hypothesis (which is viewed here as being implicitly satisfied) can
easily be verified by analysis.
The vector amψλ with m = bλc+1 furnishes an eigenvector associated with the eigenvalue λ−m
with (since λ is not an integer) the bounds −1 < λ −m < 0 . The existence of such negative
eigenvector is a contradiction.

�

The map a is called the lowering operator because (as shown above) it allows to go one step
back in energy. Starting from ψn, we can return to the fundamental state after n iterations
(anψn ∼ ψ0). Then, this leads to the zero vector (since amψn = 0 for m > n).

Lemma 8. All the (integer) eigenvalues of N are of multiplicity one.

Proof. For n = 0, the dimension of the kernel of N is 1 due to the assumption (1.9). Suppose
that the dimension of ker(N − jId) is 1 for all j ≤ n, that is:

∀j ∈ {0, · · · , n}, ker(N − jId) = {Cψj ;C ∈ C}.
Let ψ be an eigenvector of N associated with the eigenvalue n + 1. We have just seen that aψ
is an eigenvector associated to the eigenvalue n, and it is therefore of the form aψ = Cψn. We
apply c to recover:

caψ = Nψ = (n+ 1)ψ = Ccψn = Cψn+1,

which shows that ψ must be colinear to ψn+1.
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Remark 9. The action of c, a, N and H viewed in terms of matrices, that is according to the
viewpoint of Heisenberg, is developped in [2]-paragraph 5.1.4. The eigenfunctions of a which are
called états cohérents are described in [2]-part 5.2.

At this stage, we have an exhaustive description of the point spectrum σp(H) of H. We know
that σp(H) ⊂ σ(H). But do we have σp(H) = σ(H) ?
Let G be the closure of the vector space spanned by the ψn. If G = H, its over. Otherwise, by
construction, the space G is stable by a and a∗. Its orthogonal complement G⊥ is invariant under
the action of a∗ and a, and thereby under the action of N = a∗a. We can therefore consider
the restriction of N to G⊥, and repeat the preceding procedure. This argument faces (again)
domain considerations. Furthermore, we do not have necessarily for N|G⊥ some initiation step
of the type (1.9). To complete our study, some analytical arguments are needed.

1.3. The analytical approach. That means to look at

H = −∂2q + q2, H = L2(R).

This allows to fill in the gaps mentioned above. This gives access to a more concrete intuition.
By this way, we can also develop further perspectives
Since H is of compact resolvant [1], we can directly say that the spectrum of H is discret and
built on a sequence of eigenvalues λn which go to +∞. Those are the λn = n+ (1/2). We now
have to show that the ψn for n ∈ N∗ form a basis of L2(R). The proof is detailed in [1]-paragraph
6.2.2. It is not reproduced here.

1.4. Additional information. The purpose of this paragraph is to furnish development paths:
• The Hermite functions ψn are drawn in [2]-figure 5.1;
• The reference [3] allows to better understand why it is so useful to represent quantum
mechanics in the phase space. It also furnishes through some modeling an intuition about
various phenomena such as: the spreading of the wave function (due to dispersion), the
quantum tunnelling or the quantum chaos;
• The vectors ψn play a crucial role from the viewpoint of the Fourier transform F . Indeed,
they allow to diagonalize the action of F according to F(ψn) = in ψn. This can be seen at
the level of the Bargmann transform (or how to see L2 as a space of analytic functions).
• The quantum field theory (QFT) describes the evolution of particles, while incorporating
the possibility of creation or annihilation in the interaction process. To this end, it
implies fields which are operator valued. The field part satisfies propagation equations
(of wave, Dirac, ... types). The operator part deals with creation and annihilation.
To take into account the possible existence of an infinite number of quantum particles
satisfying rules of symmetry (for bosons) or of skewsymmetry (for fermions), we imply a
Second quantization. The ladder operators are seen as acting on Fock spaces. The article
of P. A. M. Dirac published in 1949 (Annales of IHP) presents the basic ideas as well as
fundamental results.

2. A step towards quantum electrodynamics (QED)

We have sufficient material to describe (partially) the ideas allowing to pass from a classical
description of the electromagnetic field to its quantum conception.

2.0.1. Maxwell’s equations. These equations have been proposed in 1861 by J. C. Maxwell. The
electric field E(t, x) is a vector of R3 whose evolution (in vacuum) are driven by the following
wave equation (where c is the speed of light):

(2.1) (∂2tt − c2 ∆x)E = 0.
8
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Remark 10 (First quantization). The Schrödinger equation is not suitable from a relativistic
viewpoint (even if V ≡ 0), because it is not invariant under the Lorentz group. In special
relativity, we work with the four-vector (E, p) whose norm in the Lorentz metric to reveal the
rest mass of particles. This gives rise to the dispersion relation which links the energy E to the
impulsion p according to:

E2 = p2c2 +m2c4.

Another approach is to write the "Schrödinger equation" that is associated with this new hamil-
tonian. It is obtained through a (first) quantization replacing E and p by their corresponding
observables (which are −i~∂t and −i∂x) leading to the Klein-Gordon equation:(

∂2tt − c2 ∆x + (m2c4/~2)
)
ψ = 0.

For m = 0 (as in the case of photons), if we consider the wave function ψ as a real scalar field
propagating in vacuum, we recover (2.1).

Given a direction k ∈ R3, we can seek solutions of (2.1) in the form of plane waves, that is

E(t, x) = g(ωt− k · x), g ∈ C∞(R;R3).

After substitution, this yields the dispersion relation

ω(k) = ±c |k|.
The Gauss’s law gives moreover

divE = −k · g′(ωt− k · x) = 0,

which means that g′ is in a direction belonging to the plane which is orthogonal to k, and we
can select an orthonormal basis (e1, e2) of it. Thus, modulo a constant, we have

g(z) = g1(z) e1 + g2(z) e2, gi ∈ C∞(R;R).

For a wave trapped in a box, we can perform a discrete Fourier analysis. Otherwise, we use the
global Fourier transform. By this way, we can decompose the gi as sums of cosinus and sinus.
We find building blocks like

(2.2) g1 = E cos
(
ω(k)t− k · x

)
, g2 = ±E sin

(
ω(k)t− k · x

)
where the scalar E ∈ R+ plays the part of an energy, whereas the sign ± is for a right (+) and
left (−). polarization. The different form of polarization are detailed (with pictures) in this text
and the mecanisms of superposition of waves are explained in this link. For a photon, there are
two possible helicities which correspond to the two possible states of circular polarisation of the
photon (clockwise + and counterclockwise −) and they appear after projection of a quantum
observable (the spin).
Th wave dynamic (2.2) is the one of a circular motion with radius E. The classical electro-
magnetic radiation in vacuum is therefore equivalent to the sum indexed by k (wave vector) of
classical harmonic oscillators that should be doubled due to the helicity (±). By this way, we
get the classical phase space

2
⊕
k∈R3

R2
pk,qk

with for each value of k the classical hamiltonian
(
p2k + ω(k)2 q2k

)
/2. More precisely, the idea is

not to allow all energies E by replacing this description with its quantum version. At the end,
The quantum space H and its hamiltonian H are respectively

H =
⊗
k∈R3

(
L2(Rqk)⊗ C2

)
, H =

∑
k∈R3

1

2

(
−∂2qk + ω(k)2 q2k

)
,

where C2 is introduced to take into account the spin (1/2) of the electron (or its polarisation
state). There are other (not mentionned) complications due to the simultaneous presence of
many photons as well as their creation and annihilation (this is the second quantifization).
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• For useful complements on the spectral study of the Laplacian with various boundary
conditions, see:
[5] M. Lewin, Eléments de théorie spectrale: le Laplacien sur un ouvert borné.
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