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0. Introduction

We give the context of the discussion, the objectives and the motivations. We also produce a
rapid historical overview.

0.1. Context. In quantum mechanics, physical observables (that is the mesurable quantities)
are represented by linear operators on Hilbert spaces denoted by H (describing the states of the
system). This is in particular the case of the position operator Q and of the momentum operator
P . For experimental and historical reasons (that we will recall), these operators must satisfy the
following canonical commutation relations:

(CCR) [Q,P ] = QP − PQ = i~ Id where ~ ∼ 10−34 is the reduced Planck constant.

0.2. Purpose. To better understand the mathematical foundations of quantum mechanics by
classifying all the triplets (H, Q, P ) leading to (CCR).
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0.3. Motivations. The electromagnetic radiation including the visible light (which occupies a
very small part of the electromagnetic spectrum, namely wavelengths between 400 and 800 nm)
has always fascinated physicists and numerous mathematicians. It makes life on Earth possible
(through the photosynthesis); it is also at the origin of almost all power sources ; and it gives rise
to numerous applications: the fire, heating source during prehistory, is a first example whereas
health and communications are more recent illustrations. On the scientific side, it is one of the
more complex and mysterious phenomenon. It contributed to a number of scientific revolutions,
and likely will be again in the future. There is a common understanding that electromagnetic
radiation has the properties of waves (at large scales) but its microscopic behavior also implies
corpuscular facets (notion of photon). To start with, it is important to keep in mind some
historical landmarks on the different conceptions of light.

0.4. Historical landmarks. The concept of light has a long history behind it.

0.4.1. Period before 1900. This is called the classical period. We highlight below some major
benchmarks:

• Euclid’s Optics from Euclide (300 av. J.-C.);
• the Book of Optics from Ibn Al-Haytham (965). Up to middle age, it was thought that
the eyes were being created some light which were coming to illuminate the objects. It
was not until the 1000s that the arab scientific Ibn Al-Haytham undermines this theory.
He showed by means of experiment that the eyes are optical instruments instead of being
generators of light.
• the world from R. Descartes (1596), this is a position statement for heliocentrism (against
geocentrism);
• the Treatise on Light from C. Huyghens (1629), wave theory;
• the Opticks from I. Newton (1642), corpuscular theory (grain of light);
• Return to the wave theory with T. Young (1773, polarisation of light), A. Fresnel (1788,
discovery of infrared and ultraviolet rays), J.-C. Maxwell (1831, finding of Maxwell
equations for the propagation of electromagnetic waves), H. Lorentz (1853, luminiferous
aether), H. Poincaré (1854, works about the speed of light), A. Einstein (1879, relativity).

The interaction between the matter (in the form of plasma) and electromagnetic waves can be
described at large scales (..., tokamaks, magnetospheres, planetary systems, galaxies, ...) by
quasilinear hyperbolic systems which are built with the equation of A. A. Vlasov (1908-1975)
and the equations of J. C. Maxwell (1831-1879). The mathematical understanding of this system
requires some analysis of partial differential equations as well as notions coming from the worlds
of pseudo-differential operators and nonlinear analysis.

0.4.2. Period after 1900. This is the quantum revolution. It is based on two principles:

• The equivalence between mass and energy:
- E2 = p2c2 +m2c4 for a particle of momentum p and proper mass m, which becomes

E = mc2 for a particle at rest (p = 0) in a Galilean reference frame;
- For a photon (which has zero mass and speed c in all inertial frames - it is never at

rest), we set E = pc (De Broglie relation) and E = hν (relation of Planck-Einstein where
h ∼ 6× 10−34 is the Planck constant and ν is the radiation frequency).
• The duality between the two behaviors:

- corpuscular: description through quanta (or photons with energy E = hν). The
equations of propagation are those of Heisenberg (they have been written during the
year 1925);

- waves: description through the probability of the presence of particles. The equations
of propagation are those of Schrödinger (they have been written during the year 1926).
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The synthesis between these two representation modes (corpuscular with Heisenberg and waves
with Schrödinger) is achieved through the Stone-Von Neumann theorem (1931) which is presented
in this text.

1. Basic principles of quantum mechanics

We provide here some benchmarks (see the chapter 1 of this text) about the experiments and
the physical ideas that have led to the statement of the Stone-Von Neumann theorem. In this
first part, the result is given without proof. The purpose is first to motivate the approach of
Von Neumann, to put it in its historical context, and to better situate it at the interface with
physics. The reader who is interested by further mathematical developments may find in [7,8,9]
other avenues for reflection as well as extra references.

1.1. The Black-body radiation. Works of M. Planck (born in 1858).
Planck’s law describes the repartition of electromagnetic energy (which is proportional to the
density of photons) radiated by a black body at thermal equilibrium (that is with a given tem-
perature) in terms of the wave length (which is inversely proportional to the energy of a photon).
The ultraviolet catastrophe is the expression used by the austrian physicist P. Ehrenfest to
designate the results of the first experiences which (in the range of high frequencies) were in
contradiction with the conclusions of classical physics (see the Wien’s displacement law and the
Rayleigh-Jeans law).

Tableau 1. The black-body radiation

black body temperature (K or C◦) radiation (hz) intensity (Cd)

black hole ∼ 0 ∼ 0 ∼ 0

iron bar 10◦ infrared (grey) 1

iron bar 100◦ red/yellow 2

iron bar 1000◦ white 4

sun 5000◦ ultraviolet catastrophe !

Planck’s law addresses the ultraviolet catastrophe noted above. In the range of high frequencies,
it provides more precise and reliable forecasts than the preceding ones. To deduce it from
fundamental principles, M. Planck takes the view that heated materials can be described by a set
of oscillators implying discrete exchanges of energy. This quantum of action ∆E = hν measures
the granularity of energetic exchanges. At that time, the formula of Planck was considered as a
mathematical trick (the light was still seen as a wave).
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1.2. The photoelectric effect. Works of A. Einstein (1879-1955) which was rewarded with the
nobel prize (1921).

A metal plate is illuminated by electromagnetic waves having a given amplitude and a fixed
frequency ν. We find that electrons coming from the atoms can be emitted but this phenomenon
does not occur when the incident frequency is too much small, when it is below some threshold.
This effect is not impacted by the amplitude (which counts the number of implicated photons)
of the wave, whether it is large or not.
The explanation is as follows. The light may be viewed as a set of elementary particles called
photons, having each a discrete quantity of energy E = hν. Each photon interact with an atom.
The electron can leave the metal surface when the incident photon has a sufficient energy E,
above the exit work W (which maintains the electron near its atom). On the other hand, the
amplitude does not play a role in this mechanism (which does not depend on the number of
photons implied).
When the light beam is composed with photons having a frequency below the threshold frequency,
contrary to preceding theories, the uprooting of electrons does not happen. The increase of the
amplitude implies indeed that the received energy has increased. But the accumulation is handled
differently. The energy of low frequency photons is first absorbed by the atom and then it is
re-radiated in the form of photons (with possibly new frequencies and thereby change of colors)
and not in the form of photoelectrons.
The above photoelectric effect has produced the first experimental evidence that electromagnetic
radiation is intrinsically made of grains of energy hν. The photon of frequency ν was born !

1.3. The Bohr model. Works of N. Bohr (born in 1885).

4

https://en.wikipedia.org/wiki/Photoelectric_effect
https://en.wikipedia.org/wiki/Albert_Einstein
https://www.nobelprize.org/prizes/physics/1921/summary/
https://www.nagwa.com/fr/explainers/193131350326/
https://en.wikipedia.org/wiki/Photon
https://en.wikipedia.org/wiki/Bohr_model
https://en.wikipedia.org/wiki/Niels_Bohr


N. Bohr (and his collegues) have questioned the atomic structure of the hydrogen (isotope 1H: one
proton and two electrons). His theory which has become obsolete was established on a planetary
model (developed earlier by Rutherford) for the motion of electrons around the nucleus (there
are similarities with the moon turning around the earth - except that the electromagnetic force
comes to replace the gravitation force).

However, from Maxwell’s law, an electron submitted to an acceleration should continuously
emit some electromagnetic radiation. It should follow a concentric spiral (and not a circle)
and subsequently crash into the nucleus (in about one nanosecond). These two aspects (fall
and emission of radiations) are in contradiction with the observations. Indeed, we see that the
different spectral lines of the hydrogen atom have a discrete repartition.

To take into account these observations, N. Bohr postulated that:
- only a finite number of (stationary) orbits are occupied;
- the electron does not radiate or absorb energy except when passing from one orbit to one

another.

It follows that:
- the energies of the electrons are quantified: En = (−13, 6ev)/n2 with n ∈ {1, 2, 3, · · · };
- the radii of the orbits are quantified: rn with n ∈ {1, 2, 3, · · · }.

Various possible
positions of the electron
around its nucleous

The electrons which turn around the nucleous are said in a bound state. Their energy is then
negative. The bound state of minimal energy (E1) is called a ground state This is the only one
that is stable. The other (excited) states are unstable. They can transit from one level of energy
to another according to the following mechanisms (which among other things may explain the
color of the objects):

- Absorption. The electron may pass from the state En to the state Em with m > n when a
photon of frequency νnm ≥ (En−Em)/h hits the atom (with some energy input ∆E = Em−En).
The case of two energies E1 and E2 is described on the picture below:
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If the energy hν of the photon is enough (hν > −En), the electron located on the niem layer
may leave the atom (with a kinetic energy that absorbs a part of the energy surplus hν + En).
The electron is then in some unbound state, and the remaining atom is ionized.

- Spontaneous emission. When the electron is in an excited state, it can transit from the state
Em to a state of lower energy En with m > n. A photon is then emitted, removing the excess of
energy ∆E = Em − En. The case of two energies E1 and E2 is described on the picture below:

The energies En = (−13, 6ev)/n2 are adjusted in coherence with the observations concerning
the spectral lines of the hydrogen atom. In particular, the Balmer formula was available. It was
then improved into the Rydberg formula:

λnm =
B

4

m2 n2

m2 − n2
, νnm =

1

λnm
=

4

B

( 1

n2
− 1

m2

)
, n < m.

The quantum frequencies νnm (so called because they correspond to the gaps observed in the
spectral lines) are brought together in "series" (Lyman, Balmer, Paschen, ...):

Lyman serie (n= 1)︷ ︸︸ ︷
ν1,∞ > · · · > ν1,2

= =

4/B 3/B︸ ︷︷ ︸
ultraviolet

Balmer serie (n= 2)︷ ︸︸ ︷
> ν2,∞ > · · · > ν2,3

= =

1/B 5/9B︸ ︷︷ ︸
visible light

Paschen serie (n= 3)︷ ︸︸ ︷
> ν3,∞ > · · · > ν3,4

= =

4/9B 7/36B︸ ︷︷ ︸
infrarouge

· · ·
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Remark 1 (The Bohr-Sommerfeld atom). The Bohr model has been (just after 1916) improved
by A. Sommerfeld (1868). The goal was to take into account the (very slight) doubling of the
spectral lines. To this end, A. Sommerfeld introduced relativistic corrections and he described no
more the orbits as circles but instead as ellipses. He used two quantum numbers (say a and b)
instead of one (r) in the case of circles. The numbers a and b quantified into a1, a2, · · · and b1,
b2, · · · are associated with the lengths of the large and small axis of ellipses (when r1, r2, · · ·
were associated with the radii of the circles).

The reader can refer to this text for more details on the Bohr atom, as well as a (brief) quantum
description of it.

1.4. Confrontation of the Bohr model with observations. In the Bohr model, the electron
is viewed as a "classical" particle whose position qcn(t) ∈ R3 lies on the nth orbit and which moves
periodically along a circle. The function qcn can be expanded in a Fourier series according to

(1.1) qcn(t) =

+∞∑
α=−∞

A(n, α) e2πiν(n,1)αt, A(n,−α) = Ā(n, α).

By this way, two classical parameters (called classical because they correspond to a classical
representation of the motion of the electron) are:
• the classical frequencies ν(n, α) := ν(n, 1)α; • The classical amplitudes A(n, α).

For various reasons, the quantum frequency νn(n−α) is linked to the classical frequency ν(n, α).
This comparison can be made for instance at the asymptotic level. Indeed, for α fixed and n
which goes to +∞, the Rydberg formula indicates that:

νn(n−α) = − 8

B n3
α+O(

1

n4
) ∼ ν(n, 1)α = ν(n, α) with ν(n, 1) = − 8

B n3
.
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Similarly, the quantum amplitude An(n−α) (which measures the effective intensity of the spectral
line observed at the frequency νn(n−α)) can be related to the classical amplitude A(n, α). Pushing
the analogy to the side of (1.1), we can imagine to describe the movements qqn(t) of a quantum
electron on the nth orbit according to

(1.2) qqn(t) =
+∞∑

α=−∞
An(n−α) e

2πiνn(n−α)t.

It is interesting to compare through two pictures the visions underlying the repartition of the
quantum and classical frequencies.

The above left drawing highlight the relations:

(En − En−α′) + (En−α′ − En−α) = En − En−α

which imply that

(1.3) νn(n−α′) + ν(n−α′)(n−α) = νn(n−α).

On the contrary, the above right drawing is inspired by the classical model of vibrating strings for
which the frequencies are multiple of a fundamental frequency ν(n, 1). Since ν(n, α) = ν(n, 1)α
for all α ∈ Z, we have:

(1.4) ν(n, α′) + ν(n, α− α′) = ν(n, α).

Remark 2 (Comparison of frequency structures). It is important to retain that the quantum
frequencies νnj do not satisfy the relations (1.4) but (1.3). We will see that the νnj can be
interpreted as the eigenvalues of operators. This is why it is so interesting to consider the algebraic
and/or geometrical structures revealed by the picture (in R or C) of the spectrum. Besides, note
that replacing (1.1) by (1.2), we pass from the framework of periodic functions to the one of
almost periodic functions, that has been defined during this period (around 1923) by H. Bohr
(danish mathematician and footballer, brother of Niels Bohr).

On the other hand, for α fixed and n large, the relation (1.4) can be used for the νn(n−α) with
a good degree of approximation. This is in the spirit of Bohr correspondence principle which
states that at the limit of large quantum numbers (here n) characterizing the atomic systems,
we must recover the formula of classical physics.

Remark 3 (A word about semi-classical analysis). This idea of Bohr on the transition between
quantum and classical physics has lead to a branch of mathematics, the semi-classical analysis
(for which it is often the parameter h that is chosen as going to zero). The reader can look at this
presentation of Y. Colin de Verdière or, for a commented bibliography, to this text of B. Helfer.
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2. The matrix mechanics

Matrix mechanics is a formulation of quantum mechanics created byW. Heisenberg, Max Born,
and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent
formulation of quantum mechanics. Driven by a sort of positivism (but can we create the world
by looking at it ?), W. Heisenberg gets away from the conceptual model of Bohr to retain that
the effective amplitudes Qnm(t) := Anm e

2πiνnmt that are extracted from the signal qqn(t) and
that verify (due to their definition):

(2.1) i ~
d

dt
Qnm(t) = (Em − En)Qnm(t), ~ =

h

2π
.

2.1. The Copenhagen interpretation. The school of Copenhague was an intellectual current
which considers that that it does not make sense to talk about objects without measuring them.
It was initiated by N. Bohr, W. Heisenberg, P. Jordan and M. Born who decided to focus on the
observable quantities which are the Qnm(t) and the En, and to cross-tabulate them:

Q(t) =



Q11(t) Q12(t) · · · Q1n(t) · · ·

Q21(t)
. . .

...
. . .

Qn1(t)
...

 , H =


E1 0 · · · 0 · · ·
0 E2
...

. . .
0
...

 .

The observables are the infinite matrices Q(t) and H which can be viewed as acting on the
state space which is made of the states built with the vectors of CN (those are the elements of
a complex separable Hilbert space). The operator Q(t) is called position operator because it
combines the effects of the qqn(t) into a complete signal

(2.2) qq(t) =
∑
n∈Z

qqn(t) =
∑
n,m

Anm e
2πiνnmt.

The function qq must be real valued. This means that Amn = Ānm. From its definition and from
the matrix rules of computation, the observable Q(t) evolves in time according to the Heisenberg
equation:

(2.3) i ~
d

dt
Q = [Q,H], [Q,H] := QH −HQ.

The observable H that is constant in time and that commutes with itself must also satisfy (2.3).
Besides, by analogy with the classical situation, we can deduce from (1.2) a quantum momentum,
or impulsion, denoted by pqn(t) and given by:

(2.4) pqn(t) = m
d

dt
qqn(t) =

+∞∑
α=−∞

Pn(n−α)(t), Pnm(t) := 2πim νnmAnm e
2πiνnmt.

Again, the coefficients Pnm(t) = P̄mn(t) are solutions to (2.1), whereas the resultant observable
P (t) :=

(
Pnm(t)

)
nm

satisfies (2.3). The operator P (t) is called the momentum operator because
it combines the effects of all the pqn(t). Indeed, we can sum on n the pqn(t) to recover the observed
complete signal pq(t).
These considerations are the premises of the mathematical formulations of quantum mechanics
(which were axiomatized by J. Von Neumann in 1932 in his book Mathematical Foundations of
Quantum Mechanics). They stipulate that:

All observables evolves in time according to the equation (2.3) of Heisenberg.
In classical mechanics, the physical quantities are the energy, the momentum, the magnetic
moment, ... They can be determined through the positions q and the momentum p. For instance,
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for the harmonic oscillator (the spring), the energy is given by the hamiltonian:

H(q, p) =
1

2
(q2 + p2).

But how can we compute the observable H with the help of the observables Q and P ? By
extrapolation, we can think about:

H
(
qq(t), pq(t)

)
=

1

2

(
qq(t)2 + pq(t)2

)
.

In view of the structure (2.2) of the implemented signals, this leads to consider products of the
type

(2.5)

(∑
n,m

Anm e
2πiνnmt

) (∑
p,q Bpq e

2πiνpqt
)

=
∑
m6=p

AnmBpq e
2πi(νnm+νpq)t +

∑
n,q

(∑
m

AnmBmq

)
e2πiνnqt

where the law (1.3) has been exploited to obtain simplifications. The right hand side is "almost"
of the form (2.2), but not completely ...

Remark 4 (Composition rules). These nonlinear considerations are typical of geometric optics
[5]. We observe a sum of the frequencies and a multiplication of the intensities (coefficients). In
this process, the relation (1.3) expresses a resonance (correlation ot the frequencies). It highlights
the amplitude of the coefficients which are on the right of (2.5), that is:

(2.6) (AB)nq =
∑
m

AnmBmq.

The sum that implies the indices m 6= p (which are not compatible with the preceding writing)
are neglected.

The precise reasons which motivated W. Heisenberg towards the composition rules (2.6) (without
knowing the matrix composition) are analyzed in [2]. From the above, we can see that the matrix
composition is imposed by: linear considerations at the level of (2.3) and non linear considerations
concerning (2.6). The solution of (2.3) is non stationary (and therefore non trivial) when the
two observables Q and H do not commute.
In the textbook case provided by the quantum harmonic oscillator for which

H =
1

2
(Q2 + P 2) (quantum harmonic oscillator),

to study the source term (2.3), we need to commute Q and P . Supported by N. Bohr, the group
comprised of M. Born, P. Jordan and of W. Heisenberg settle down to work and comes to the
conclusion that the position observable Q and the momentum observable P must satisfy the
following canonical commutation relation (CCR in abbreviated form):

(2.7) [P, P ] = 0, [Q,Q] = 0, [P,Q] = −i~Id.

Remark 5. In space dimension d, the positions and momenta are indexed by i ∈ {1, · · · d}. We
work with Pi and Qi and there are 3 d2 relations which are:

(2.8) [Pi, Pj ] = 0, [Qi, Qj ] = 0, [Pi, Qj ] = −i~ Id δij .

This is P. Dirac who (around 1925) made the link between (2.8) and the relation {p, q} = 1
which is satisfied in Hamiltonian mechanics by the Poisson brackets {p, q} implying the classical
variables q and p which are canonically conjugate. For a system with d degrees of freedom, the
d coordinates qi of q determine the position of a point q on a differentiable manifold V with d
dimensions. The conjugate momentum p is an element of the cotangent space T ∗pV. The 2 d
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coordinates of (q, p) represent a position in the phase space T ∗V which is equipped with the
symplectic bilinear form:

σ :=
d∑
i=1

dqi ∧ dpi.

We say that the transformation T : T ∗V → T ∗V is canonical when it conserves the symplectic
structure. Given a function f : T ∗V → T ∗V, the question is to know how to associate to it
(in a natural and coherent way) an operator on L2(V). This is the problem of the geometric
quantization (called sometimes canonical) which tries to connect the symplectic manifolds (seen
as phase spaces, think about T ∗V) and their canonical transformations T with on the other
side the Hilbert spaces H - think about L2(V) - and the associated unitary operators U(H).
The passage from the classical physical quantities to the quantum observables must follow the
correspondence principe. In the case d = 1 and V ≡ R, the basic rules consists in associating
to the coordinate q the (unbounded) multiplication operator by q× and to the coordinate p the
(unbounded) derivative operator −i~∂q. Thus, we have to consider the actions:

q× : C∞0 (R) → L2(R)
f(q) 7→ q × f(q),

−i~∂q : C∞0 (R) → L2(R)
f(q) 7→ −i~∂qf(q).

More generally, we can retain the table below.

Tableau 2. Correspondence between the classical and quantum observables

Physical quantity a Observable A

Position x, y, z, r Multiplication by x, y, z, r

Potential energy V (r) Multiplication by V (r)

Momenta px, py, pz Derivations −i~∂x, −i~∂y, −i~∂z
Momentum vector p Gradient −i~∇

Kinetic energy Ec = |p|2/(2m) Laplacien −~2∆/(2m)

Total energy E = Ec + V (r) Hamiltonian −~2∆/(2m) + V (r)

Orbital kinetic moment L = r × p L = −i~ r ×∇

Remark 6 (On the list of observables). There exist quantum observables that are not directly
issued from classic observables (which are functions of q and p). This is the case for instance
for the spin which, like for the mass or the electric charge, expresses some internal property of
particles. It follows that the phase space associated with a quantum particle located inside V is
in fact bigger than L2(T ∗V). Typically, it looks like L2(T ∗V)× Cn for some n ∈ N∗.
The spin is often assimilated to some intrinsic kinetic moment. It is also sometimes associated
to notions of polarization and of helicity that are derived from it. It can also be obtained by
geometrical considerations. Indeed, it can be described by the unitary representations of the
group SU(2), see [10]-paragraph 3.5.

Remark 7 (On the interpretation of more general classical observables). The functions listed
in the left of the table imply products whose associated observables commute. This is true even
for the components of the kinetic orbital moment, for instance xpy − ypx. Thereby, there is no
problem to represent them as operators on the right of the table. But what choice could be done
in the case of xpx = pxx. Should we take QP or PQ knowing that QP 6= PQ ? There is an
ambiguity concerning the order of these operations that will be discussed further in the text.
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Remark 8 (The expression quantization may have two distinct meanings that should be known
and distinguished). I. Todorov explains in his lecture notes how the word "quantization" may be
used in the field of mathematical physics and the corresponding nuances:

- The geometric quantization (called also canonical) is a mathematical approach to defining a
quantum theory corresponding to a given classical theory. It is based on the symplectic geometry,
and it is aimed to transit from classical mechanics to quantum mechanics. This is the passage
from "symbols" to "operators";

- The second quantization. This second method furnishes a quantum description of multiple-
particle systems (comprising a finite number of N particles, this is the N -body problem) with the
help of the description (already quantic) of one particle. In fact, in order to take into account
the spontaneous creation of particles, a quantum system must incorporate an infinite number
of particles. The second quantization constructs a functor inside the category of Hilbert spaces,
which sends H towards the Fock space Γ(H).

The passage from the classic world to the quantum framework can also be done at the level of
the equations of motion. The Heisenberg equation (2.3) can be viewed as the extension of the
Liouville equation. At all events, the condition (2.7) is a prerequisite. The issue is to determine
what are the functional frameworks that allow to put it in concrete form.

Question 9. What are (modulo isomorphisms) the set of triplets (H, Q, P ) involving two self-
adjoint operators Q and P which act (as unbounded operators) on the complex Hilbert space H
and which are compatible with (2.7). And how to construct them?

2.2. Translation into mathematics. The starting point is (2.7).

Lemma 10. We assume (2.7). Then H must be of finite dimension.

This is a clear motivation to study vector spaces having infinite dimension !

Proof. As observed by H. Weyl, in the opposite case, taking the trace of (2.7), we obtain that
0 = −i~dimH which is a contradiction.

�

Lemma 11. We assume (2.7). Then the operators Q and P are bounded.

This is a motivation to study unbounded operators !

Proof. By contradiction again. By symmetry, we can suppose that Q is bounded. Since P = P ∗,
the action of e±itP/~ is unitary (this is the Stone theorem on the unitary semi-groups - to learn
by heart). Besides:

(2.9) eitP/~Qe−itP/~ = Q+ tId, ∀t ∈ R.
This is indeed true for t = 0. And, due to (2.7), the time derivative of the term on the left and
on the right must coincide. The term on the left (2.9) is uniformly bounded in time. By contrast,
the term on the right is not. This is the expected contradiction.

�

It follows that the relation (2.7) can only be considered for unbounded operators acting on
infinite dimensional spaces, with all the subtleties [4] that this implies ! The first difficulty
concerns already the test of the CCR. What can be said about PQ when the image of Q is not
in the domain of P ?
A way to bypass these difficulties is to interpret (2.7) on the exponential side. One of the
advantages is that e±isQ/~ and e±itP/~ become bounded operators on the whole space H. By this
way, we are lead to manipulate the auxiliary operators:

(2.10) Us := eisQ/~ ∈ U(H), Vt := e−itP/~ ∈ U(H)

which are amenable to the exponential version of the CCRs.
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Definition 12. [Weyl commutation relations] This is the relation:

(2.11) Us Vt = eist/~ Vt Us, ∀(s, t) ∈ R2.

There is some heuristic argument allowing to deduce (2.11) from (2.9). Indeed, it suffices to
expand Us as a formal sum and then to use (2.9) in order to obtain:

V −1
t Us Vt =

+∞∑
n=0

1

n!
V −1
t

( isQ
~

)n
Vt =

+∞∑
n=0

1

n!

( is
~

)n
V −1
t QnVt =

+∞∑
n=0

1

n!

( is
~

)n
(V −1
t QVt)

n

=

+∞∑
n=0

1

n!

( is
~

)n
(Q+ tId)n = eis(Q+tId)/~ = eist/~ Us.

Remark 13. Be careful. The above argument is not correct. Indeed, for n > 2, the operator Qn
is not (always) well defined (because Q is an unbounded operator whose image is not necessarily
contained in the domain of Q).

At this stage, the passage from (2.9) to (2.11) is not fully rigorous. To be convinced of that,
we can provide with a counter-example. Take H = L2

p([−1, 1] which is just L2 with boundary
periodic conditions. We work with Q = x× and P = −i~∂x. We obtain that Us = eisx/~×. On
the other hand (for all n ∈ N), we have:

Vt e
iπnx =

+∞∑
j=0

1

j!

(−itP
~

)j
eiπnx =

+∞∑
j=0

1

j!
(−iπnt)j eiπnx = e−iπnt eiπnx = eiπn(x−t).

The position x− t is not sure to be in the interval [−1, 1] but it falls inside this interval after an
adequate translation. Let mt,x be the unique integer satisfying −1 ≤ x− t− 2mt,x ≤ 1. Then:

eiπn(x−t) = eiπn(x−t−2mt,x).

As the sequence of the ψn(x) := eiπnx with n ∈ N is dense in L2
p([−1, 1], we have

Vt ≡ S−t, (S−tψ)(x) := ψ(x− t− 2mt,x).

Then we find that:
Us Vt ψ0 = Us S−t ψ0 = Us ψ0 = eisx/~.

On the other hand:

eist/~ Vt Us ψ0 = eist/~ S−t e
isx/~ = eist/~ eis(x−t−2mt,x)/~ = eisx/~ e−2ismt,x/~.

We see here that in general Us Vt 6≡ eist/~ Vt Us.

Remark 14. Note however that, under reasonable assumptions, we can deduce (2.11) from (2.9).
This is Nelson’s theorem, see [8] - p. 15.

We will consider (2.11) as a substitute for (2.9). In the continuation of (2.11), we can define the
unitary operator

ρ(t, s, r) := eir/~VtUs ∈ U(H) :=
{
A ∈ L(H);A−1 = A∗

}
.

By construction, we have:

(2.12)

ρ(t1, s1, r1) ρ(t2, s2, r2) = (eir1/~ Vt1Us1)(eir2/~ Vt2Us2)

= ei(r1+r2)/~ Vt1(Us1Vt2)Us2
= ei(r1+r2+s1t2)/~Vt1+t2Us1+s2

= ρ(t1 + t2, s1 + s2, r1 + r2 + s1t2).
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Remark 15. Let us introduce the group of matrices

(2.13) Heis (R) :=


 1 s r

0 1 t
0 0 1

 ; (s, r, t) ∈ R3

 .

The composition law of 3× 3 unipotent matrices gives rise to: 1 s1 r1

0 1 t1
0 0 1

 1 s2 r2

0 1 t2
0 0 1

 =

 1 s1 + s2 r1 + r2 + s1t2
0 1 t1 + t2
0 0 1

 .

Thus, it furnishes composition rules which are similar to (2.12):

(s1, r1, t1) ◦ (s2, r2, t2) = (s1 + s2, r1 + r2 + s1t2, t1 + t2).

The set Heis (R) equipped with the composition of matrices is called the Heisenberg group of
order three that is associated with R. We can also look at Heis (R) as the Lie algebra h1 whose
exponential produces a Lie groupe (strictly speaking, the Heisenberg group). From the algebraic
viewpoint, the use of the exponential, which is put in practice at the level of (2.10), is what allows
to pass from the Lie algebra to the Lie group. The interesting reader can refer to the lecture notes
of O. Schiffmann [9].

The choice of ρ made above does not give a symmetric role to s and t. We can prefer the following
more symmetric version:

(2.14) %(t, s, r) := ei(r+st/2)/~ VtUs

which furnishes

(2.15) %(0, 0, r) = eir/~ IdH,

as well as

(2.16)

%(t1, s1, r1) %(t2, s2, r2) = (ei(r1+s1t1/2)/~ Vt1Us1)(ei(r2+s2t2/2)/~ Vt2Us2)

= ei(r1+r2+s1t1/2+s2t2/2)/~ Vt1(Us1Vt2)Us2
= ei(r1+r2+s1t1/2+s2t2/2+s1t2)/~Vt1+t2Us1+s2

= ei[(r1+r2)+(s1+s2)(t1+t2)/2+(s1t2−s2t1)/2]/~Vt1+t2Us1+s2

= %
(
t1 + t2, s1 + s2, r1 + r2 + (s1t2 − s2t1)/2

)
.

The variables s and t which are respectively associated with the position (Q) and the momentum
(P ), are dual of each other. The formula (2.16) highlights the symplectic form

σ
(
(t1, s1), (t2, s2)

)
= (t1, s1)

(
0 −1
1 0

)(
t2
s2

)
= (s1t2 − s2t1)

which incites to look at the vectors v = (t, s) ∈ R2 as being the elements of a two dimensional
symplectic space.

Definition 16 (The Heisenberg algebra of a symplectic vector space). Given a symplectic space
(E, σ), we can define the Lie algebra heis(E, σ) = E⊕Re0 which is equipped with the Lie bracket

[v1 + r1 e0, v2 + r2 e0] = σ(v1, v2) e0.

Remark 17. The vectors Q = (1, 0) and P = (0, 1) form a symplectic basis of E = R2 whose
representatives Q̃ = Q+ 0× e0 and P̃ = P + 0× e0 in heis(E, σ) satisfy:

[P̃ , P̃ ] = 0, [Q̃, Q̃] = 0, [P̃ , Q̃] = σ
(
(0, 1), (1, 0)

)
e0 = e0.

By this way, the Heisenberg algebra allows to conceptualize (2.7), while making the link with the
underlying symplectic structure.
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Remark 18. We have [
[v1 + r1 e0, v2 + r2 e0], v3 + r3 e0

]
= 0,

which shows that heis(E, σ) is a nilpotent Lie algebra of rank two.

Definition 19 (Heisenberg group - Symplectic version). The Heisenberg group of the symplectic
space (E, σ) is the group N = E ⊕ Re0 equipped with the composition law

(2.17) (v1 + r1e0)◦ (v2 + r2e0) = v1 + v2 +
(
r1 + r2 +σ(v1, v2)/2

)
e0, (vi, ri) ∈ E×R.

In the particular case of the dimension two, when E = R2, we can identify v + re0 with the
triplet (t, s, r) so that:

(v1 + r1e0) ◦ (v2 + r2e0) =
(
t1 + t2, s1 + s2, r1 + r2 + σ(v1, v2)/2

)
.

Definition 20 (Unitary representation). A unitary representation of the group (N , ◦) is a group
morphism % from N to the set U(H) of unitary operators on H. In other words % : N → U(H)
and we have:

(2.18) %(v1 + r1e0) %(v2 + r2e0) = %
(
(v1 + r1e0) ◦ (v2 + r2e0)

)
.

The representation is said to be non trivial when it is not constant (that is not equal to identity).
It is irreducible when there is no subspace of H different from {0} or H which is globally invariant
by %(N ).

For E = R2, with %(ti, si, ri) = %(vi + rie0), we can recognize inside (2.16) the formula (2.18).
Thereby, the question 9 extends into the following problem of classification.

Question 21. What are the unitary representations of the Heisenberg group N on the symmetric
space (E, σ) which satisfy (2.15) ?

Remark 22. The description (2.13) of Heis (R) takes its values in the special linear group SL(3).
It is however not unitary. It does not comply with the specifications of question 21. We could
also mention the existence of the theta representation.

Before proceeding further, we can adopt a slightly different viewpoint. To this end, we need
the following preliminary result (sometimes called Glauber formula) which must be seen as a
particular case of the Baker-Campbell-Hausdorff formula.

Lemma 23. [Glauber formula] Let A ∈ L(H) and B ∈ L(H) be two linear continuous operators
which commute with their commutators. In other words

(2.19)
[
A, [A,B]

]
=
[
B, [A,B]

]
= 0.

Then:

(2.20) eA eB = eA+B+[A,B]/2.

Proof. If we remplace A by tA and B by tB with t ∈ R in (2.20), we recover a more general
formula, which is

(2.21) etA etB = et(A+B)+t2 [A,B]/2.

By exploiting (2.19), this can be interpreted into

h(t) = et(A+B), h(t) := etA etB e−t
2 [A,B]/2.

Compute

h′(t) = etAAetB e−t
2 [A,B]/2 + etA etB B e−t

2 [A,B]/2 − t etA etB e−t2 [A,B]/2 [A,B].

Using (2.19), we find that
d

dt
(e−tB AetB) = e−tB [A,B] etB = [A,B],
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which gives after integration
e−tB AetB = A+ t [A,B]

and then
etAAetB = etA etB e−tB AetB = etA etB (A+ t [A,B]).

We have therfore

h′(t) = h(t) (A+ t [A,B] +B − t [A,B]) = h(t) (A+B),

and of course h(0) = Id. The function h satisfies the same ODE as et(A+B) and it shares the
same initial condition. The two expressions must coincide.

�

Instead of working with Us and Vt and then % as in (2.14), we can prefer to exploit

ρ̃(t, s, r) := ei(tQ+sP+rId)/~ ∈ U(H).

As
[t2Q+ s2P + r2Id, t1Q+ s1P + r1Id] = t2s1[Q,P ] + s2t1[P,Q] = i~(s1t2 − s2t1),

Glauber’s formula gives directly access to the laws of the Heisenberg group, namely

ρ̃(t2, s2, r2) ρ̃(t1, s1, r1) = ρ̃
(
t1 + t2, s1 + s2, r1 + r2 + (s1t2 − s2t1)/2

)
.

We can also interpret the preceding manipulations in the perspective of complex analysis. Given
z = s+ it and z′ = s′ + it′, define

Wz := e−i(sP−tQ), Wz′ := e−i(s
′P−t′Q).

With A = −i(sP − tQ) and B = −i(s′P − t′Q), we obtain that

[A,B] = −[sP − tQ, s′P − t′Q] = st′[P,Q] + ts′[Q,P ] = i~ (ts′ − st′) Id

which obviously commutes with A and B. Although the operators sP − tQ and s′P − t′Q are
not bounded, we will (as it was the case at the level of Definition 12) ignore the complications
related to the domains of the operators. We apply Lemma 23. By this way, we find that

(2.22) WzWz′ = ei~ (ts′−st′)/2Wz+z′ = e−i~ Im(zz̄′)/2Wz+z′ = e−i~ Im〈z,z′〉/2Wz+z′ .

This is another version of Weyl commutation relations in which W appears as a projective
representation of the group (C,+). According to the context, it may be preferable to deal with
the real and symplectic facets through (12) or to opt for the complex formulation (2.22).

3. The wave mechanics

This is about a line of research initiated by E. Schrödinger from 1926. But we have first to
mention the pioneering works of L. De Broglie (undertaken in 1924 in his thesis on the wave
structure of electrons). L. De Broglie is a french mathematician and physicist who adopted the
opposite direction which goes from waves to particles, that is:

Any moving particle or object of mass m and velocity v has an associated wave.
A wave may be represented by a function ψ(t, x) defined on the spacetime. If we suppose that it
is sufficiently localized and integrable, it can be interpreted at the time t as belonging to L2(Rd),
with d = 1 or 2 or 3 according to the dimension of the studied phenomenon. A vision of the type
"discret object " can always be applied by selecting an orthonormal basis e1, e2, · · · , en, · · · of
the space L2(Rd), often denoted by |e1〉, |e2〉, · · · , |en〉, · · · by physicists. This basis has a dual
basis 〈e1|, 〈e2|, · · · , 〈en|, · · · which is characterized by

〈ei|ej〉 ≡ (ei, ej) =

∫
Rd
ēi(x) ej(x) dx = δij , ∀(i, j) ∈ N2.
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Any element ψ(t, ·) of L2(Rd) can be decomposed into

ψ(t, ·) =

+∞∑
n=1

cn(t) |en〉, cn(t) := 〈en|ψ(t, ·)〉.

By this way, we can identify states ψ(t, ·) ∈ H ≡ L2(Rd) with vectors
(
cn(t)

)
n
∈ `2(N;C) ⊂ CN.

The viewpoint of Schrödinger is to fix the observables, and to see the states as waves ψ(t, ·) in
L2(Rd;C) evolving according to:

(3.1) i ~ ∂tψ = Hψ, H : Dom(H) ⊂ L2 → L2.

To simplify, we will suppose that the operator H does not depend on the time t. Then, for an
electron of the atom which is subjected to some electromagnetic potential V : Rd → R created
by the protons of the nucleus, in a first approximation, we can take:

(3.2) H = − ~2

2m
∆x + V (x), ∆x =

d∑
j=1

∂2
xj , V ∈ C∞(Rd;R).

We see here that the action of H is typically achieved through some self-adjoint unbounded
operator [4]. The choice of H comes often from a lagrangian or hamiltonian formulation of the
equations. The observable H corresponds to the computation of an energy. The state of the
system evolves according to:

ψ(t) = W (t)ψ(0), W (t) := e−itH/~.

This means that the operator H plays the role (in the sense of Stone’s theorem [4]) of a generator
of time translations of the wave functions. KnowingH, a well adapted choice (from the viewpoint
of physical interpretations) consists in selecting (when it exists, see the course on spectral theory)
the basis made of eigenvectors |e1〉, |e2〉, · · · , |en〉, · · · (associated to the eigenvalues En) generated
by H. Then, we have:

W (t)ψ(0) =

+∞∑
n=1

e−itEn/~ cn(0) |en〉 .

Remark 24 (The case of free particles). When V ≡ 0, we can solve the equation (3.1) whose
coefficients are then constant by a Fourier transform. This yields:

W (t)ψ(0) =
1

2π~

∫ +∞

−∞
ϕ~(p) e−ip

2t/(2m~) eixp/~ dp,

where ϕ~(p) is obtained from ψ(0) by Fourier transform (with parameter ~).

The propagator W (t) is a unitary operator. Hence, the L2-norm of ψ(t, ·) is equal to 1 if the
L2-norm of the initial data ψ(0) has been normalized. Thereupon, the square |ψ(t, x)|2 can be
interpreted (as first suggested by N. Bohr) as a probability density of the presence of the particle
at (t, x). The mean value 〈A〉(t) of the observable A against ψ(t) is:

〈A〉(t) := 〈ψ(t), Aψ(t)〉 = 〈ψ(0), A(t)ψ(0)〉, A(t) := W (t)∗AW (t).

In the approach of Heisenberg, it is the state ψ(0) which is fixed whereas the operator A moves
with time as A(t). From the definition of A(t), we can easily recover the equation of Heisenberg.
Indeed, knowing that

[W (t), H] = 0, W (t)∗W (t) = W (t)W (t)∗ = Id,

we can obtain as expected that:

i ~ ∂tA(t) = −W (t)∗HAW (t) +W (t)∗AHW (t)
= −W (t)∗HW (t)W (t)∗AW (t) +W (t)∗AW (t)W (t)∗HW (t) = [A(t);H].
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Remark 25 (The Ehrenfest’s theorem). Compute

d

dt
〈A〉(t) =

1

i ~
〈ψ(0), [A(t);H]ψ(0)〉 =

1

i ~
〈[A(t);H]〉.

In the case of an hamiltonian of the type H(Q,P ) = V (Q) + (P 2/2m), this leads to:
d

dt
〈Q〉(t) =

1

i ~
〈[Q;P 2/2m]〉

d

dt
〈P 〉(t) =

1

i ~
〈[P ;V (Q)]〉.

The relation (2.7) furnishes directly:

[Q;P 2/2m] = i~P/m.

For an analytical potential V (·), this gives access to:

[P ;V (Q)] =
+∞∑
n=0

Vn [P ;Qn] = −i~
+∞∑
n=1

nVnQ
n−1 = −i~V ′(Q).

Thus, we have to deal with: 
d

dt
〈Q〉(t) = 〈P 〉/m,

d

dt
〈P 〉(t) = −〈V ′(Q)〉.

Assuming that 〈V ′(Q)〉 can above be replaced by V ′(〈Q〉), we find the Hamilton-Jacobi equations
of a classical particle located at (〈Q〉, 〈P 〉) and subject to the hamiltonian:

H(〈Q〉, 〈P 〉) = V (〈Q〉) + (〈P 〉2/2m).

This argument furnishes a correspondence (through the computation of mean values) between the
quantum and classical situations. However, in general, the mean value of V ′(Q) does not coincide
with V ′ evaluated at 〈Q〉. It follows that significant differences may occur between the quantum
and classical dynamics (the quantum tunnelling [6] is one of them).

Remark 26 (The perspective of microlocal analysis). It is possible to look at the action of the
operator A(t) : S(Rd) → S ′(Rd) through its symbol σ(t, x, ξ). Indeed, the action of A(t) may be
viewed as the one of an element σ(t, ·) ∈ S ′(Rd × Rd), and we can read the time evolution of
the distribution σ(t, ·) as a dynamic in the phase space. Another method, often more illustrative
but less general, consists in studying the action of A(t) on a specific state. This amounts to
consider the Husimi representation (see [6] - paragraph 1.3.2.2) of a quantum state ψ(t, ·) which
is a special solution to the Schrödinger equation. An alternative method is to exploit the Segal-
Bargmann transform.

Remark 27 (Come back to atomic spectroscopy). The values obtained for the En depend of
course on the choice of H. For a coulombian potential (of the type 1/|x| and not |x|2 as for
the harmonic oscillator), we recover the 1/n2 of Rydberg’s formula with for each En = 1/n2 a
multiplicity (2k + 1)n2 (where k is the spin - this is 1/2 for the electron). In practice, we can
observe near each En the existence of gaps among which:

- the fine structure which describes the duplication of the spectral line associated with En.
This effect is of relativistic origin. It can be explained by resorting to the Dirac equations (the
hamiltonian becomes with values in C4), see [10]-paragraph 4.3;

- the Lamb shift which is due to the interactions between the fluctuations of the vacuum and
the hydrogen electron on its orbitals. It is necessary to use the second quantifization to explain
this phenomenon;
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- the hyperfine structures which are issued from the interactions between the magnetic dipoles
induced by the nuclei and the electrons.
The theoretical description of these different aspects can be made by some modeling and then by
the spectral theory of adequate operators.

4. The Stone Von-Neumann theorem

Le us come back to the question 9. At this stage, we have focussed on two conceptions
which are apparently distinct: the matrix and wave approaches. There is however some analogy
between the two, which is related to (2.7). Indeed, consider the (unbounded) position operator
Q̃j and momentum operator P̃j acting according to:

Q̃j ψ = xj ψ, P̃j ψ = −i~ ∂xjψ.
For the sake of simplicity, we can work in space dimension one (with d = 1 and x ∈ R). The
involved operators are then just:

Q̃ = x×, P̃ = −i~ ∂x.
As already explained, the first step in the quantization of a particle is to replace the position x
and the momentum p by the operators Q̃ and P̃ . Obviously:

[P̃ , Q̃]ψ = −i~ ∂x(xψ) + ix~ ∂xψ = −i~ψ.

The two operators Q̃ and P̃ are therefore compatible with (2.7). Besides, a formal calculus
(which for ψ in the Schwartz space does not raise problems about domains and which can be
justified by the differential characterization in Stone’s theorem) furnishes

Ũsψ := eisQ̃/~ψ =
∑ 1

n!
(isQ̃/~)nψ =

∑ 1

n!
(isx/~)nψ = eisx/~ψ,

Ṽtψ := e−itP̃ /~ψ =
∑ 1

n!
(−itP̃ /~)nψ =

∑ 1

n!
(−t)n ∂nxψ = ψ(x− t).

As expected, the actions of Ũs and Ṽt make sense on the whole space L2(Rd). We also see
that the position operator Q̃ and the momentum operator P̃ are the generators of translation
groups respectively in momentum p and in position x (see [6]-paragraph 2.1). A novelty is that
explicit formulas are available. They allow to test directly (without passing through Q̃ and P̃ )
the validity of (2.11). Indeed, we have:

(4.1) Ũs Ṽt ψ = eisx/~ ψ(x− t) = eist/~ eis(x−t)/~ ψ(x− t) = eist/~ Ṽt Ũs ψ.

Knowing (4.1) and applying (2.14), we can effectively construct a unitary representation of the
group (N , ◦) which is built on L2(R). This is the (one dimensional version of the) Schrödinger
representation. There are other explicit representations. For instance, V. Bargmann who was
the assistant of A. Einstein at the Institute for Advanced Study in Princeton (from 1937 to 1946)
has introduced (in 1961) another representation which is based on the Segal-Bargmann space.

Theorem 28. [Stone Von-Neumann theorem] A non trivial unitary irreducible representation
% : N → U(H) which is such that %(re0) = eir/~IdH is necessarily unitary equivalent to the
Schrödinger representation.

The proof is detailed for instance in [7]-paragraph 3.4.
The formula (2.18) and the condition %(re0) = eir/~IdH have been introduced from (2.11) and
from (2.15). We will be satisfied below with working on representations deduced from Q and P
through the passage to the exponential as in (2.10). In this context, the notion of irreducibility
is translated into the following condition.

Definition 29. Operators Q and P satisfying (2.11) act in an irreducible way on H if the only
closed subspaces of H which are invariant under the action of Us and Vt are {0} and H.
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Starting from (2.11), we can now formulate the following alternative to Theorem 28.

Theorem 30. [Simplified version in dimension d = 1 of the Stone Von-Neumann theorem] Let
Q and P be two self-adjoint operators acting in an irreducible way on H and satisfying the Weyl
commutation relations (2.11). There exists a unitary transformation U : H → L2(R) such that:

U eisQ/~ U−1 = eisQ̃/~, U e−itP/~ U−1 = e−itP̃ /~.

According to this statement, the representations obtained by Heisenberg and Schrödinger are
unitary equivalent. In other words, they are two facets of a same object. Or working with
H = L2(R) and (3.1) allows to put (2.7) in a concrete form (without losing information).

Remark 31. As already explained, the relations (2.11) are built through a unitary representation
of (N , o) for which N = E⊕Re0 where E is of finite dimension (namely even). There exist more
general situations for which E is of infinite dimension. This is typically the case in quantum field
theory. Then, there is an infinite number of degrees of freedom, often indexed by the wave vectors
k ∈ R3. We lose the uniqueness of the unitary transformation (except if we impose supplementary
restrictions [9]) but we keep the existence of a reduction to the Schrödinger equation.

Our aim is to prove Theorem 30. This is the occasion to talk about the harmonic oscillator
(lesson 2), about the uncertainty principle (lesson 3) and about various problems of quantization
(lesson 4).
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