LICENCE

D01 : Fonctions de plusieurs variables, intégrales multiples, courbes paramétrées

Examen Terminal

Lundi 15 Mai 2006 Durée : 2 heures

Exercice 1

Soit f la fonction définie sur $\mathbb{R}^2 \setminus (0, 0)$ par :

$$f(x, y) = Ln(x^2 + y^2)$$

 $\text{Calculer } \frac{\partial^2 f}{\partial \, x^2} \, (x \, , \, y) + \frac{\partial^2 f}{\partial \, y^2} \, (x \, , \, y).$

Exercice 2

Calculer le volume de la "calotte" sphérique définie par :

$$x^2 + y^2 + z^2 \leqslant R^2$$
 et $z \geqslant \frac{R}{2}$

(On pourra utiliser les coordonnées cylindriques (r, θ, z) avec $x = r \cos \theta, y = r \sin \theta, z = z$.)

Exercice 3

Soit S la sphère d'équation $x^2 + y^2 + z^2 = 4$.

- 1. Quelle est l'équation du plan tangent à S en $(x_0, y_0, z_0) \in S$?
- 2. Pour quelles valeurs de z_0 ce plan tangent est-il parallèle à Oz?
- 3. En quels points (x_0, y_0, z_0) ce plan tangent est-il parallèle à Oz et passe-t-il par (0, 4, 0)?

Exercice 4

Soit *S* la surface $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$.

Chercher les minimum et maximum de la fonction $f(x, y, z) = x^2 + y^2 + z^2$ sur cette surface S.

1

Exercice 5

Soit D le domaine compris entre les paraboles $2y = x^2$ et $y = -x^2 + 3$.

- 1. Dessiner le domaine D.
- 2. Calculer son aire.