LICENCE

D01 : Fonctions de plusieurs variables, intégrales multiples, courbes paramétrées

Contrôle Continu n°2

Mercredi 29 Mars 2006 Durée : 30 minutes

Exercice 1

Soit la fonction définie sur \mathbb{R}^2 par :

$$f(x, y) = 2x^2 - x^4 + 3y^2 - 2y^3$$

- 1. Chercher les points critiques de cette fonction.
- 2. Pour chacun des points critiques, indiquer s'il s'agit d'extrema, de points selles ou de points où le théorème du cours ne précise pas de quoi il s'agit.

Exercice 2

Soit la fonction définie par :

$$f(x, y) = \frac{xy^3}{x^2 + y^2}$$
 si $(x, y) \neq (0, 0)$
 $f(x, y) = 0$

- 1. Calculer $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$.
- 2. Calculer en $(x, y) \neq (0, 0)$: $\frac{\partial f}{\partial x}(x, y)$ et $\frac{\partial f}{\partial y}(x, y)$.
- 3. Calculer $\frac{\partial^2 f}{\partial x \, \partial y} (0, 0)$ et $\frac{\partial^2 f}{\partial y \, \partial x} (0, 0)$. Que peut-on déduire de ce résultat?