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Abstract

In this paper, we study the robustness of backward stochastic di$erential equations (BSDEs
for short) w.r.t. the Brownian motion; more precisely, we will show that if Wn is a martingale
approximation of a Brownian motion W then the solution to the BSDE driven by the martingale
Wn converges to the solution of the classical BSDE, namely the BSDE driven by W . The
particular case of the scaled random walks has been studied in Briand et al. (Electron. Comm.
Probab. 6 (2001) 1). Here, we deal with a more general situation and we will not assume that
the Wn has the predictable representation property: this yields an orthogonal martingale in the
BSDE driven by Wn. As a byproduct of our result, we obtain the convergence of the “Euler
scheme” for BSDEs corresponding to the case where Wn is a time discretization of W . c© 2002
Published by Elsevier Science B.V.
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1. Introduction

We consider in this paper the following backward stochastic di$erential equation
(BSDE for short in the remaining of the paper) driven by a Brownian motion
W = {Wt}06t6T

Yt = �+
∫ T

t
f(r; Yr; Zr) dr −

∫ T

t
Zr dWr; 06 t6T: (1)

The solution of such an equation is a process {(Yt; Zt)}06t6T which has to be pro-
gressively measurable w.r.t. {Ft}06t6T (the @ltration generated by W ) even though
the condition YT = � is imposed at the terminal time T . The terminal condition � is
an FT -measurable random variable and the random function f is such that, for all
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(y; z), the process {f(t; y; z)}06t6T is progressively measurable. It is by now well
known that the BSDE (1) has a unique square integrable solution providing that
�; {f(t; 0; 0)}06t6T are also square integrable and that f is Lipschitz w.r.t. both y
and z (see Section 3 for precise assumptions); we refer to the original work of Par-
doux and Peng (1990) or to the survey paper by El Karoui et al. (1997).

One of the interesting features of BSDEs are the “a priori” estimates which give the
stability of solutions to BSDEs w.r.t. the data (�; f); for instance, in El Karoui et al.
(1997), the authors used such estimates to get the classical existence and uniqueness
result. In this work, we are also interested in some kind of robustness properties of
solutions to BSDEs but w.r.t. W instead of (�; f). To be more precise, we will consider
the solution {(Y nt ; Z

n
t )}06t6T to the BSDE (1) but with W replaced by Wn where the

martingale {Wn
t }06t6T converges to W uniformly on [0; T ] in probability (ucp for

short) as well as in L2 and we will prove that the corresponding solution (Y n; Zn)
converges to (Y; Z). We should point out that we will not assume that the martingale
Wn has the predictable representation property (for this notion, we refer to Jacod, 1979,
Chapter XI; Protter, 1990, Chapter 4; or to Revuz and Yor, 1991, Chapter V in the
continuous case) so that we will have to @nd a triple {(Y nt ; Z

n
t ; N

n
t )}06t6T such that

Y nt = �n +
∫ T

t
fn(r; Y nr−; Z

n
r ) d〈Wn〉r −

∫ T

t
Znr dWn

r − (Nn
T − Nn

t ); 06 t6T ;

(2)

in this equation, {Nn
t }06t6T is a martingale which is orthogonal to Wn; �n is an

Fn
T -measurable random variable where {Fn

t }06t6T is the @ltration generated by Wn;
{fn(t; y; z)}06t6T is progressively measurable w.r.t. {Fn

t }06t6T for each (y; z) and
{〈Wn〉t}06t6T denotes the predictable quadratic variation of Wn. BSDEs driven by
martingales are also considered in El Karoui and Huang (1997) but in the case where
the quadratic variation is continuous; other generalizations of BSDEs can be found in
Barles et al. (1997), Pardoux et al. (1997) and Pardoux and Zhang (1998).

The main issue of this paper is to show in Section 4 that if (�n; fn;W n) converges
to (�; f;W ), we have the convergence of the solution to the BSDE (2) (Y n; Zn) toward
the solution to the BSDE (1) (Y; Z). This generalizes the result in Briand et al. (2001)
where the case of Wn being the scaled simple random walks were considered.

To motivate this study, let us consider a time discretization of the BSDE (1) in
the spirit of the Euler scheme for SDEs. The objective is to solve backwards in time,
noting h for T=n, the equation

Y nkh =Y n(k+1)h + hf((k + 1)h; Y nkh; Z
n
kh) − Znkh(W(k+1)h −Wkh);

where Y nT = �n is given and under the constraint that the unknown (Y nkh; Z
n
kh) depends

only on Wh; : : : ; Wkh−W(k−1)h. This constraint is due to the fact that the solution to the
BSDE (1) has to be adapted to the @ltration generated by the Brownian motion W . If
we consider the case where f ≡ 0, we see that the previous equation cannot be solved
since the discretization of the Brownian motion has not the predictable representation
property. To overcome this diPculty we add an orthogonal martingale term to the
equation which becomes

Y nkh =Y n(k+1)h + hf((k + 1)h; Y nkh; Z
n
kh) − Znkh(W(k+1)h −Wkh) + (Nn

(k+1)h − Nn
kh):
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This backward equation corresponds to the case where Wn is the time discretization
of the Brownian motion W and will be studied in Section 5.1, Proposition 13.

Let us point out that the standard computation of |Y nt −Yt |2 with Itô’s formula, which
is usually the starting point of proofs of stability results, is not so powerful here: this
is mainly due to the fact that Wn and W are not necessarily martingales with respect
to a common @ltration. As in Briand et al. (2001) the notion of “weak convergence
of @ltrations” will be very useful to handle this problem and it appears that the case
where f and fn are identically 0 is a key point.

The rest of the paper is organized as follows: in Section 2, after some notations we
deal with the case where f and fn are 0 which is the simplest case and the most
important. Section 3 contains all the assumptions and is mainly devoted to the study
of BSDEs driven by Wn. In Section 4 we prove our main result and @nally in the last
section we give some examples and illustrations.

Finally, let us precise that we will use during the paper the classical notations of
stochastic calculus that appear for instance in Dellacherie and Meyer (1975) and Revuz
and Yor (1991).

2. The martingale context

Let (�;F;P) be a complete probability space carrying a standard real valued Brow-
nian motion W = {Wt}06t6T ; we will denote {Ft}06t6T the right continuous and
complete @ltration generated by W . On this space, we consider a sequence of cSadlSag
(right continuous with left limits) square integrable {Fn

t }06t6T -martingales Wn =
{Wn

t }06t6T , where, for each n; {Fn
t }06t6T is right continuous and complete.

We will say that a cSadlSag process X = {Xt}06t6T , with values in Rd, belongs to the
space Sp(Rd) or simply Sp where 16p¡∞, if

‖X ‖pSp = E
[

sup
t∈[0;T ]

|Xt |p
]
¡∞:

In this section, we will treat the simplest linear case namely f= 0 and fn = 0.
This result together with the Picard procedure and Proposition 11 will allow us to
deal with the general case. We start with a result concerning the convergence of
the predictable quadratic covariation of martingales. Firstly, we give a theorem con-
cerning the “continuity” of the predictable compensator also called dual predictable
projection. The proof of this result is given in the appendix at the end of the
paper.

Theorem 1. Let {X n
t }06t6T be a sequence of c4adl4ag {Fn

t }06t6T -integrable
processes with 6nite variation and X n

0 = 0 which converges in S1(R) to the continuous
{Ft}06t6T - adapted process {Xt}06t6T . In addition; we assume that { TX

n
t }06t6T ;

TX
n
t = Var(X n)t =

∫ t
0 |dX n

s |; is C-tight; and the variables TX
n
T are uniformly integrable.

Then; the predictable compensator {Pnt }06t6T of {X n
t }06t6T converges to

{Xt}06t6T in S1(R).
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As a byproduct, we can obtain a result about the convergence of the predictable
covariation of martingales.

Proposition 2. Let {Mn
t }06t6T and {Nn

t }06t6T be two sequences of c4adl4ag
{Fn

t }06t6T -square integrable martingales which are bounded in S2(R). We
assume that {Mn

t }06t6T converges in S2(R) to the continuous {Ft}06t6T -martingale
{Mt}06t6T and that {Nn

t }06t6T converges to the martingale {Nt}06t6T in probability
for the Skorokhod topology.
Then {〈Mn; Nn〉t}06t6T converges to {〈M;N 〉t}06t6T in S1(R).

Proof. Under the assumptions, the sequence (Mn; Nn) satis@es the uniform tightness
(UT) condition; cf Proposition 1:5 (b) of M,emin and S lomi,nski (1991) (for an English
reference, see Section 7 of Kurtz and Protter, 1996). This implies, by Corollary 1:9
of M,emin and S lomi,nski (1991), that the sequence of processes with @nite variation
paths ([Mn; Nn])N converge in ucp to the cross variation of M and N; [M;N ] which
is a continuous process with @nite variation paths. We want to apply Theorem 1 to
[Mn; Nn] since 〈Mn; Nn〉 is the predictable compensator of [Mn; Nn].

Let us pick 06 s6 t6T ; we have:

|[Mn; Nn]t − [Mn; Nn]s|6Var([Mn; Nn])[s; t]

6 ([Mn]t − [Mn]s)
1=2([Nn]t − [Nn]s)

1=2:

Since Mn converges to M in S2(R); [Mn] converges to [M ] in ucp (the UT condition
is satis@ed) and Sche$,e’s lemma implies that [Mn]T converges in L1 to [M ]T ; thus
the convergence of [Mn] to [M ] holds in S1(R). The previous estimate, for t=T and
s= 0, yields

sup
t∈[0;T ]

|[Mn; Nn]t |6Var([Mn; Nn])T 6 ([Mn]T )1=2([Nn]T )1=2

and thus gives, since [Nn]T is bounded in L1, the uniform integrability of Var([Mn; Nn])T
and also the convergence of [Mn; Nn] to [M;N ] in S1(R). It remains to check the
C-tightness of Var([Mn; Nn])t . But, we have,

E
[

sup
06t−s6�

Var([Mn; Nn])[s; t]

]
6 E[[Nn]T ]1=2E

[
sup
t∈[0;T ]

[Mn]t+� − [Mn]t

]1=2

;

and thus the left hand side tends to 0 with �→ 0 since [Mn] converges to the continuous
process [M ] in S1(R). This implies the C-tightness.

By Theorem 1, we obtain the convergence of 〈Mn; Nn〉 to [M;N ] = 〈M;N 〉 in S1(R).

Before going further, let us precise the assumptions we will work with in the
following:
(H1) (i) Wn is a square integrable martingale which converges to W in S2(R);

(ii) there exist � :R+ → R+ with �(0+) = 0 and a deterministic sequence
(an)N with limn→∞ an = 0 such that, P-a.s.,

∀06 s6 t6T; 〈Wn〉t − 〈Wn〉s6 �(t − s) + an;
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(H2) � is FT measurable and, for all n; �n is Fn
T measurable such that �n converges

to � in L2.
Before stating an important result of this paper, let us recall the notion of “weak

convergence of @ltrations” which has been studied in Coquet et al. (2001): we say
that {Fn

t }06t6T converges weakly to {Ft}06t6T , if, for each set A∈FT , the cSadlSag
martingale Mn

t := E(1A |Fn
t ) converges in ucp to the martingale Mt := E(1A |Ft).

If (Y n; Zn; Nn) denotes the solution to the BSDE (2) and (Y; Z) the solution to the
BSDE (1), we want to prove the convergence of (Y n; Zn; Nn) to (Y; Z; 0) and for the
@rst component i.e. the Y ’s we would like to get at least the convergence in ucp. But
when fn and f are identically 0, we have Y nt = E(�n |Fn

t ) and Yt = E(� |Ft). Since
�n is assumed to converge in L2 to �, we get the convergence of Y n to Y in ucp
if and only if E(� |Fn

t ) converges to E(� |Ft) in ucp. Thus, the weak convergence
of @ltrations {Fn

t }06t6T to {Ft}06t6T is a necessary condition in order to get the
convergence of Y n to Y in ucp.

This comment leads to the following question: under the assumption (H1), do we
have the weak convergence of @ltrations {Fn

t }06t6T to {Ft}06t6T ? The following
proposition, which will be proved in the appendix, gives a positive answer to this
question.

Proposition 3. Let us consider; on the same probability space (�;F;P); a standard
Brownian motion {Wt}06t6T with its natural 6ltration {Ft}06t6T ; a sequence of
6ltrations {Fn

t }06t6T and a sequence {Wn
t }06t6T of square integrable {Fn

t }06t6T -
martingales. We suppose that Wn converges to W in S2(R).
Then {Fn

t }06t6T weakly converges to {Ft}06t6T .

Remark 4. It is worth noting that the previous result is not true if Wn is not a mar-
tingale. To see this, let us choose T = 1 and Wn

t equal to Wt + 1
nW1: we have the

convergence of Wn to W in Sp(R) (for all real p¿ 1), but {Fn
t }06t6T is not weakly

convergent to {Ft}06t6T . Indeed, for each t ∈ [0; 1], Fn
t = �(Ws; s6 t; W1) and thus

E(W1 |Fn
t ) =W1 which does not converge to E(W1 |Ft) =Wt in ucp.

With this proposition in hands, we can state one of the main results of this paper.
It concerns the robustness of the orthogonal decomposition of �n w.r.t. Wn. A similar
study is considered in Jacod et al. (2000).

Theorem 5. Let the assumptions (H1) and (H2) hold. We consider the orthogonal
decomposition w.r.t. Wn of �n; i.e. Zn is a predictable process and Nn a c4adl4ag
martingale (with Nn

0 = 0) which is orthogonal to Wn and

Mn
t = E(�n |Fn

t ) =Mn
0 +

∫ t

0
Znr dWn

r + Nn
t ; 06 t6T

and the representation of � as a stochastic integral

Mt = E(� |Ft) =M0 +
∫ t

0
Zr dWr; 06 t6T:
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Then; we have(
Mn;

∫ ·

0
Znr dWn

r ; N
n
)

→
(
M;
∫ ·

0
Zr dWr; 0

)
; as n→ ∞

in S2(R3) and(∫ ·

0
Znr d〈Wn〉r ;

∫ ·

0
|Znr |2 d〈Wn〉r

)
→
(∫ ·

0
Zr dr;

∫ ·

0
|Zr|2 dr

)
in S2(R) ×S1(R); as n tends to ∞.

Proof. Since �n converges to � in L2, we can assume without loss of generality that
each �n is bounded by the same constant say k. As a byproduct of this remark, we
need only to prove the convergence in probability under the additional assumption that
Mn is uniformly bounded by k which implies that

sup
n
E
[(∫ T

0
|Znr |2 d〈Wn〉r

)p
+ 〈Nn〉pT

]
is @nite for all real p¿ 1. Indeed, we have supn E[supt |Mn

t |p]6 kp and then by BDG
inequality supn E{[Mn]p=2T }¡∞. Moreover, since 〈Mn〉 is the predictable compen-
sator of [Mn], we have, see e.g. (Dellacherie and Meyer, 1980, Eq. (100:2) p. 183),
E{〈Mn〉p=2T }6 (p=2)p=2E{[Mn]p=2T }, as soon as p¿ 2. Thus, since Nn and Wn are
orthogonal, we get, for each t ∈ [0; T ],

〈Mn〉t =
∫ t

0
|Znr |2 d〈Wn〉r + 〈Nn〉t

from which the result follows.
Since we have the weak convergence of the @ltration {Fn

t }06t6T to {Ft}06t6T , we
can apply the second point of Remark 1 in Coquet et al. (2001) to get the convergence
of Mn to M in the sense of Skorokhod-topology on D. But Brownian martingales
are continuous so that the previous convergence holds also in ucp and in all Sp

spaces. Hence we can apply Proposition 2 to (Wn;Mn) to obtain the ucp convergence
of 〈Mn;Wn〉 and 〈Mn〉 towards 〈M;W 〉 and 〈M 〉, respectively. Namely, taking into
account the fact that Wn and Nn are mutually orthogonal,(

Mn;
∫ ·

0
Znr d〈Wn〉r ;

∫ ·

0
(Znr )2 d〈Wn〉r + 〈Nn〉

)
→
(
M;
∫ ·

0
Zr dr;

∫ ·

0
(Zr)2 dr

)
:

It remains only to prove that 〈Nn〉 tends actually to 0. For this, let us @rst remark that,
since 〈Mn〉−〈Nn〉 is an increasing process, the increments of 〈Nn〉 are bounded by those
of 〈Mn〉. Thus 〈Nn〉 is C-tight. By Theorem 4:13 of Chapter 6 in Jacod and Shiryaev
(1987), the tightness in C of 〈Nn〉 implies the tightness in D of the sequence of
martingales Nn. Let N be a limit point of Nn. Using Skorokhod representation theorem,
we assume that we are on the same space and that the convergence of Nn to N holds in
probability for the Skorokhod topology. Moreover, the sequence (Wn; Nn;Mn) satis@es
the uniform tightness condition since it is bounded in L2. Thus [Wn; Nn] converges to
[W;N ] in ucp the limit being obviously continuous and with @nite variation paths.

On the other hand, Wn and Nn are orthogonal so that [Wn; Nn] is a martingale. Using
the fact that [Nn]1=2

T is bounded in L2 and the fact that [Wn]T is uniformly integrable
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by Sche$,e’s lemma, we deduce that [Wn; Nn]t is uniformly integrable and thus that
[W;N ] is a continuous martingale with @nite variation paths. Thus [W;N ] = 0.

Moreover, M is a Brownian martingale which implies that [M;N ] = 0. Taking into
account that Mn converges to M in ucp and is bounded and that Nn is bounded in L2,
Proposition 2 shows that 〈Mn; Nn〉 converges to 〈M;N 〉 in S1(R) (we work with the
@ltration of the past of (W;N )). But 〈M;N 〉= [M;N ] = 0. Since 〈Mn; Nn〉= 〈Nn; Nn〉,
we deduce that Nn converges to 0 in S2. This concludes the proof.

3. BSDEs driven by Wn

In this section, we will give some results concerning BSDEs driven by the martingale
Wn. One of the goals of this technical part is to get results that are in some sense
uniform in n. Firstly, we will give an additional assumption.

Let us recall that we are working on a complete probability space (�;F;P) carry-
ing a standard real valued Brownian motion W = {Wt}06t6T . On this space, we con-
sider a sequence of cSadlSag square integrable {Fn

t }06t6T -martingales Wn = {Wn
t }06t6T ;

{Fn
t }06t6T is right continuous and complete and {Ft}06t6T stands for the right con-

tinuous and complete @ltration generated by W .
Let f and fn be random functions, de@ned on [0; T ] × � × R × R with values in

R, such that, for each (y; z), the process {fn(t; y; z)}06t6T (resp. {f(t; y; z)}06t6T ) is
progressively measurable w.r.t. {Fn

t }06t6T (resp. {Ft}06t6T ).
We will assume that:

(H3) (i) there exists K¿ 0 such that, P-a.s., for each n and each t ∈ [0; T ],

∀(y; z); (y′; z′)∈R2; |fn(t; y; z) − fn(t; y′; z′)|6K(|y − y′| + |z − z′|)

and f is also K-Lipschitz;
(ii) for all (y; z); {fn(t; y; z)}06t6T has cSadlSag paths and converges to

{f(t; y; z)}06t6T in S2(R).
This section is devoted to the study of the BSDE (2) under the assumptions described

above which cover the case of the scaled simple random walks studied in Briand et al.
(2001). These assumptions are rather strong in order to get existence and uniqueness
of a solution. However, in preparation to further results, we need some uniform (in n)
estimates.

Firstly, let us recall that a solution of the BSDE (2) is a triple {(Y nt ; Z
n
t ; N

n
t )}06t6T

progressively measurable w.r.t. {Fn
t }06t6T such that Y n has cSadlSag paths, Zn is pre-

dictable and Nn is a cSadlSag martingale, orthogonal to Wn and such that Nn
0 = 0. We

will use a standard @xed point argument to study such BSDEs as in El Karoui et al.
(1997).
S2

a and M2 (a subscript n is omitted) denotes the set of progressively measurable
respectively predictable processes w.r.t. {Fn

t }06t6T such that

E
[

sup
06t6T

|Yt |2
]
¡+ ∞; respectively; E

[∫ T

0
|Zr|2 d〈Wn〉r

]
¡+ ∞:
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H2 (n is still omitted) is the Hilbert space of square integrable cSadlSag martingales
w.r.t. {Fn

t }06t6T endowed with the scalar product (M;N ) = E[MTNT ] and H2
0 the

closed subspace of martingales M s.t. M0 = 0.
We start with an elementary lemma:

Lemma 6. Let the assumptions (H1); (H2) and (H3) hold. Let {Ut; Vt}06t6T in S2
a×

M2. Then the BSDE

Y nt = �n +
∫ T

t
fn(r; Ur−; Vr) d〈Wn〉r −

∫ T

t
Znr dWn

r −
∫ T

t
dNn

r (3)

has a solution in the space S2
a ×M2 ×H2

0 for each n.

Proof. Firstly, we set,

Y nt = E
(
�n +

∫ T

t
fn(r; Ur−; Vr) d〈Wn〉r|Fn

t

)
;

{Y nt }06t6T is a cSadlSag process and moreover

|Y nt |6 E
(
|�n| +

∫ T

0
|fn(r; Ur−; Vr)| d〈Wn〉r|Fn

t

)
;

and thus Doob’s inequality yields

E
[

sup
06t6T

|Y nt |2
]
6 4E

[(
|�n| +

∫ T

0
|fn(r; Ur−; Vr)| d〈Wn〉r

)2]
:

The right-hand side of the previous inequality is @nite in view of the assumptions
noting in particular that supn 〈Wn〉T is @nite from (H1)(ii).

Now, {Znt ; N n
t }06t6T is given by the orthogonal decomposition w.r.t. Wn—see e.g.

(Jacod, 1979, Theorem 4:27 p. 126)—of the martingale

E
(
�n +

∫ T

0
fn(r; Ur−; Vr) d〈Wn〉r|Fn

t

)
=Y n0 +

∫ t

0
Znr dWn

r + Nn
t ; 06 t6T:

In addition, we have, since Nn and Wn are orthogonal

E
[∫ T

0
|Znr |2 d〈Wn〉r + 〈Nn〉T

]
6 10E

[(
|�n| +

∫ T

0
|fn(r; Ur−; Vr)| d〈Wn〉r

)2]
;

which is @nite as already mentioned. It is plain to check that the triple (Y n; Zn; Nn)
solves the BSDE (3) to conclude the proof.

We keep on the study by giving an easy a priori estimate.

Proposition 7. Let (Y n; Zn; Nn) (resp. (Y ′n; Z ′n; N ′n)) be the solution to the BSDE (3)
associated to (�n; U; V )∈L2(Fn

T ) ×S2
a ×M2 (resp. (�′n; U ′; V ′)).

Under the assumptions of the previous lemma; we have; for each 06 �6 #6T;

E
[

sup
�6t6#

|$Y nt |2 +
∫ #

�
|$Znr |2 d〈Wn〉r + 〈$Nn〉# − 〈$Nn〉�

]

6 42E[|$Y n# |2] + C(#− �; an)E
[

sup
�6t6#

|$Ut |2 +
∫ #

�
|$Vr|2 d〈Wn〉r

]
;
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where C(r; an) = 42K2 max{(�(r) + an)2; �(r) + an} and $Y n stands for Y n − Y ′n and
so on.

Proof. The starting point is the equation

$Y nt = $Y n# +
∫ #

t
(fn(r; Ur−; Vr) − fn(r; U ′

r−; V
′
r )) d〈Wn〉r

−
∫ #

t
$Znr dWn

r −
∫ #

t
d$Nn

r ; 06 t6 #:

Since fn is K-Lipschitz, we have

|$Y nt |6 E
(
|$Y n# | + K

∫ #

t
(|$Ur−| + |$Vr|) d〈Wn〉r|Fn

t

)
and then, Doob’s inequality gives

E
[

sup
�6t6#

|$Yt |2
]
6 4E

[(
|$Y n# | + K

∫ #

�
(|$Ur−| + |$Vr|) d〈Wn〉r

)2
]
: (4)

Moreover, we have, since Wn and $Nn are orthogonal,

E
[∫ #

�
|$Znr |2 d〈Wn〉r + 〈$Nn〉# − 〈$Nn〉�

]
= E

[∣∣∣∣∫ #

�
$Znr dWn

r + $Nn
# − $Nn

�

∣∣∣∣2
]

and ∫ #

�
$Znr dWn

r + $Nn
# − $Nn

�

=
∫ #

�
{fn(r; Ur−; Vr) − fn(r; U ′

r−; V
′
r )} d〈Wn〉r + $Y n# − $Y n� :

Using the fact that fn is K-Lipschitz, we obtain∣∣∣∣∫ #

�
$Znr dWn

r + $Nn
# − $Nn

�

∣∣∣∣
6 |$Y n# | + K

∫ #

�
(|$Ur−| + |$Vr|) d〈Wn〉r + sup

�6t6#
|$Y nt |:

From the estimate (4), we get

E
[

sup
�6t6#

|$Y nt |2 +
∫ #

�
|$Znr |2 d〈Wn〉r + 〈$Nn〉# − 〈$Nn〉�

]

6 14E
[(

|$Y n# | + K
∫ #

�
(|$Ur−| + |$Vr|) d〈Wn〉r

)2
]
:

HZolder’s inequality together with the assumption (H1)(ii) lead to the estimate

E
[

sup
�6t6#

|$Y nt |2 +
∫ #

�
|$Znr |2 d〈Wn〉r + 〈$Nn〉# − 〈$Nn〉�

]

6 42E[|$Y n# |2] + C(#− �; an)E
[

sup
�6t6#

|$Ut |2 +
∫ #

�
|$Vr|2d〈Wn〉r

]
;

with C(#− �; an) = 42K2 max{(�(#− �) + an)2; �(#− �) + an}.
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Let us remark that, since limr→0+ �(r) = 0 by the assumption (H1)(ii), there ex-
ists r0 ∈ (0; T ) such that 42K2 max(�(r); �(r)2)6 1

6 as soon as r6 r0. Let us @x
m= [T=r0] + 1 and consider the regular partition of [0; T ] into m intervals. We set,
for 06 k6m − 1; Ik = [kT=m; (k + 1)T=m] and we introduce the following norm on
S2

a ×M2 ×H2
0:

‖(Y n; Zn; Nn)‖2
s =

m−1∑
k=0

(5 × 42)k E
[
sup
t∈Ik

|Y nt |2 +
∫
Ik

|Znr |2 d〈Wn〉r +
∫
Ik

d〈Nn〉r
]
:

This norm is equivalent to the classical one since we have

‖(Y n; Zn; Nn)‖26 ‖(Y n; Zn; Nn)‖2
s6m(5 × 42)m−1‖(Y n; Zn; Nn)‖2:

The estimate of Proposition 7 and a straightforward computation show that, if
(Y n; Zn; Nn) and (Y ′n; Z ′n; N ′n) are the solutions to the BSDEs (3) with (�n; U; V ) and
(�n; U ′; V ′), we have, setting as usual $Y n =Y n − Y ′n and so on,

‖($Y n; $Zn; $Nn)‖2
s6 (1=5) ‖($Y n; $Zn; $Nn)‖2

s + C(T=m; an) ‖($U; $V; 0)‖2
s :

It is really worth noting that, since an → 0 as n → ∞, there exists n0 such that,
for all n¿ n0, for all r6 r0; C(r; an)6 1

5 ; in particular, C(T=m; an)6 1
5 as soon as

n¿ n0. Thus, for each n¿ n0, we have

‖($Y n; $Zn; $Nn)‖2
s6 (1=4) ‖($U; $V; 0)‖2

s : (5)

The previous estimate leads immediately to the following

Remark 8. There exists a unique solution, in the space S2
a×M2 ×H2

0, to the BSDE
(3) where (U; V )∈S2

a ×M2, as soon as n¿ n0.

With the help of this result, we can obtain an existence and uniqueness result for
the BSDE (2).

Theorem 9. Under the assumptions (H1); (H2) and (H3); the BSDE (2) has a unique
solution (Y n; Zn; Nn) in the space S2

a ×M2 ×H2
0; for n large enough.

Proof. We will use a @xed point argument. Let us consider the application (n from
S2

a×M2 ×H2
0 into itself which is de@ned by setting (n(U; V; L) = (Y n; Zn; Nn) where

(Y n; Zn; Nn) is the solution to the BSDE (3). Notice that L does not appear and that
(n is well de@ned by Lemma 6 and the remark above. For n large enough (larger
than the n0 constructed before), the estimate (5) says that (n is a contraction with
constant 1=2 if we use the equivalent norm ‖ · ‖s instead of ‖ · ‖ on the Banach space
S2

a ×M2 ×H2
0.

We @nish this section by an easy consequence of the estimate (5) which will be very
useful in the sequel. For each p, we consider the approximation of (Y n; Zn; Nn) by the
Picard procedure on the interval [0; T ] i.e. (Y n;0; Zn;0) = (0; 0) and, for 06 t6T ,

Y n;p+1
t = �n +

∫ T

t
fn(r; Y n;pr− ; Zn;pr ) d〈Wn〉r −

∫ T

t
Zn;p+1
r dWn

r −
∫ T

t
dNn;p+1

r :

We have the following result:
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Corollary 10. Let the assumptions of Theorem 9 hold. There exists a constant C
such that

sup
n¿n0

E
[
supt∈[0;T ] |Y nt − Y n;pt |2 +

∫ T

0
|Znr − Zn;pr |2 d〈Wn〉r + |Nn

T − Nn;p
T |2

]
6C 4−p:

Proof. It is a direct consequence of the fact that the application (n is a contraction
with constant 1=2 for n¿ n0 and for the norm ‖ · ‖s. Indeed, we have, for n¿ n0,

‖(Y n; Zn; Nn) − (Y n;p; Zn;p; N n;p)‖2 6 ‖(Y n; Zn; Nn) − (Y n;p; Zn;p; N n;p)‖2
s

6 41−pm(5 × 42)m−1‖(Y n;1; Zn;1; N n;1)‖2:

To conclude, let us notice that a standard computation leads to the inequality

‖(Y n;1; Zn;1; N n;1)‖26 28E
[
|�n|2 + (�(T ) + an)2 sup

06t6T
|fn(t; 0; 0)|2

]
;

from which we deduce, in view of the assumptions, that supn¿n0
‖(Y n;1; Zn;1; N n;1)‖2

is @nite. The proof is complete.

4. Stability of BSDEs

4.1. A technical result

We begin this section by a technical result which will be useful for proving the
convergence of the second term of the right-hand side of (2).

Proposition 11. Let (*n)N be a sequence of non-negative measures on I = [0; T ] and
(Un)N a sequence of measurable functions on I ; we assume that for some non-negative
6nite measure * and some measurable function U :

sup
t∈[0;T ]

∣∣∣∣∫ t

0
Un(s)k*n(ds) −

∫ t

0
U (s)k*(ds)

∣∣∣∣→ 0; k = 0; 1; 2:

Then for any sequence of functions Fn(s; u); l4adl4ag w.r.t. s; such that for some C;
and any t; u; v;

|Fn(t; u) − Fn(t; v)|6C|u− v|; (6)

converging uniformly in s to some l4adl4ag function F i.e.

sup
s∈[0;T ]

|Fn(s; u) − F(s; u)| → 0; (7)

one has

sup
t6T

∣∣∣∣∫ t

0
Fn(s; Un(s))*n(ds) −

∫ t

0
F(s; U (s))*(ds)

∣∣∣∣→ 0:
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Proof. For any step function ’(t) and k = 0; 1; 2, one has

sup
t6T

∣∣∣∣∫ t

0
’(t)Un(t)k*n(dt) −

∫ t

0
’(t)U (t)k*(dt)

∣∣∣∣→ 0: (8)

This extends to bounded lSadlSag functions (uniform limit of a sequence of step func-
tions). Consider now a continuous function Ũ (s) such that∫ T

0
(Ũ (s) − U (s))2*(ds)¡/2:

We can write∫ t

0
Fn(s; Un(s))*n(ds) −

∫ t

0
F(s; U (s))*(ds)

=
∫ t

0
(Fn(s; Un(s)) − Fn(s; Ũ (s)))*n(ds) +

∫ t

0
(Fn(s; Ũ (s)) − F(s; Ũ (s))*n(ds)

+
∫ t

0
F(s; Ũ (s))(*n(ds) − *(ds)) +

∫ t

0
(F(s; Ũ (s)) − F(s; U (s))*(ds):

The last term is smaller than C/
√
*(I). The third one tends to zero because of Eq. (8)

with k = 0. For the second one, notice @rst that condition (6) implies that convergence
(7) is uniform w.r.t. u in a compact set, and since {Ũ (s); s∈ [0; T ]} is compact, this
term tends to zero. For the @rst one, notice that:(∫ t

0
(Fn(Un(s)) − Fn(Ũ (s)))*n(ds)

)2

6 *n(I)
∫ t

0
(Fn(Un(s)) − Fn(Ũ (s)))2*n(ds)

6C2*n(I)
∫ T

0
(Un(s) − Ũ (s))2*n(ds)

=C2*n(I)
∫ T

0
(Un(s)2 + Ũ (s)2 − 2Un(s)Ũ (s))*n(ds):

Hence, thanks to (8), we get

lim sup
n

sup
t

(∫ t

0
(Fn(s; Un(s)) − Fn(s; Ũ (s)))*n(ds)

)2

6C2*(I)
∫ T

0
(U (s) − Ũ (s))2*(ds)

6C2*(I)/2;

which gives the result.

4.2. Main result

We now state and prove our main result.
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Theorem 12. Let the assumptions (H1); (H2) and (H3) hold. Let (Y n; Zn; Nn) be the
solution of the BSDE (2) and (Y; Z) the solution of the BSDE (1); then we have(

Y n;
∫ ·

0
Znr dWn

r ; N
n
)

→
(
Y;
∫ ·

0
Zr dWr; 0

)
;

as n tends to in6nity in S2(R3) and(∫ ·

0
Znr d〈Wn〉r ;

∫ ·

0
|Znr |2d〈Wn〉r

)
→
(∫ ·

0
Zr dr;

∫ ·

0
|Zr|2 dr

)
;

in S2(R) ×S1(R).

Proof. The method of the proof is the same as in Briand et al. (2001) and it is
based on the approximation of the solutions by the Picard method. Let us recall the
notations. (Y n;0; Zn;0; N n;0) = (0; 0; 0), (Y∞;0; Z∞;0) = (0; 0) and we de@ne recursively
for all p∈N,

Y n;p+1
t = �n +

∫ T

t
fn(r; Y n;pr− ; Zn;pr ) d〈Wn〉r

−
∫ T

t
Zn;p+1
r dWn

r −
∫ T

t
dNn;p+1

r ; 06 t6T

and, similarly,

Y∞;p+1
t = �+

∫ T

t
f(r; Y∞;p

r ; Z∞;p
r ) dr −

∫ T

t
Z∞;p+1
r dWr; 06 t6T:

Since, by Corollary 10, (Y n;p;
∫ ·

0 Z
n;p
r dWn

r ; N
n;p) converges to (Y n;

∫ ·
0 Z

n
r dWn

r ; N
n)

as p → ∞ in S2(R3) uniformly in n, it is enough to check that for each integer p,
(Y n;p; Zn;p; N n;p) converges to (Y∞;p; Z∞;p; 0) in the sense described in the statement
of the result.

The proof will be done by induction. For sake of clarity, we drop the superscript p,
so that the previous equations become

Y ′n
t = �n +

∫ T

t
fn(r; Y nr−; Z

n
r ) d〈Wn〉r −

∫ T

t
Z ′n
r dWn

r −
∫ T

t
dN ′n

r ; 06 t6T;

Y ′
t = �+

∫ T

t
f(r; Yr; Zr) dr −

∫ T

t
Z ′
r dWr; 06 t6T:

The assumption is that {Y nt ; Znt }06t6T converges to {Yt; Zt}06t6T in the sense of Theo-
rem 12 (without the N term) and we have to prove that {Y ′n

t ; Z
′n
t ; N

′n
t }06t6T converges

to {Y ′
t ; Z

′
t ; 0}06t6T in the same sense.

The process, de@ned by

Mn
t =Y ′n

t +
∫ t

0
fn(r; Y nr−; Z

n
r ) d〈Wn〉r ; 06 t6T; (9)

satis@es

Mn
t =Mn

0 +
∫ t

0
Z ′n
r dWn

r + N ′n
t : (10)
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Hence Mn is an {Fn
t }06t6T -martingale and, since Y nT = �n,

Mn
t = E(Mn

T |Fn
t ); Mn

T =Y nT +
∫ T

0
fn(r; Y nr−; Z

n
r ) d〈Wn〉r : (11)

If we want to apply Theorem 5, we have to prove the L2 convergence of Mn
T . We know

that Y nT = �n converges to YT = � so that it remains to prove that
∫ T

0 fn(r; Y nr−; Z
n
r ) d

〈Wn〉r converges to
∫ T

0 f(r; Yr; Zr) dr in L2. To do this we will apply Proposition 11.
Indeed, from Proposition 2, we know that 〈Wn〉t converges to t in ucp and in all
Sp(R). Moreover, the induction assumption gives the convergence in S2(R)×S1(R)(∫ ·

0
Znr d〈Wn〉r ;

∫ ·

0
|Znr |2 d〈Wn〉r

)
→
(∫ ·

0
Zr dr;

∫ ·

0
|Zr|2 dr

)
:

Since {fn}n is an equi-Lipschitz family, it remains only to prove that, for each u,

sup
t∈[0;T ]

|fn(t; Y nt−; u) − f(t; Yt ; u)|

goes to 0 in probability. But since fn is K-Lipschitz, we have

sup
t∈[0;T ]

|fn(t; Y nt−; u) − f(t; Yt ; u)|

6K sup
t∈[0;T ]

|Y nt − Yt | + sup
t∈[0;T ]

|fn(t; Yt ; u) − f(t; Yt ; u)|:

The @rst term tends to zero by the assumption of induction and the second by the
assumption (H3). Indeed let /¿ 0 and a¿ 0. We consider a @nite number of points
of [ − a; a], Y= (yi)16i6N (/;a), such that, if |y|6 a, dist(y;Y)6 /=(4K). On the set
{supt |Yt |6 a}, we have, writing hn for fn − f,

|hn(t; Yt ; u)|6 2K dist(Yt;Y) + max
y∈Y

|hn(t; y; u)|6 /=2 + max
y∈Y

|hn(t; y; u)|:

Thus, we obtain,

P
(

sup
06t6T

|hn(t; Yt ; u)|¿/
)
6P

(
sup

06t6T
max
y∈Y

|hn(t; y; u)|¿/=2
)

+P
(

sup
06t6T

|Yt |¿a
)
;

from which we deduce, in view of (H3), that

lim sup
n→∞

P
(

sup
06t6T

|fn(t; Yt ; u) − f(t; Yt ; u)|¿/
)
6P

(
sup

06t6T
|Yt |¿a

)
:

Sending a to in@nity, we get the result since sup06t6T |Yt | is square integrable.
Since fn(t; Y nt ; u) has cSadlSag paths, Proposition 4:1 implies that∫ ·

0
fn(r; Y nr−; Z

n
r ) d〈Wn〉r →

∫ ·

0
f(r; Yr; Zr) dr
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as n→ ∞ in ucp and in S2(R) since

sup
06t6T

∣∣∣∣∫ t

0
fn(r; Y nr−; Z

n
r ) d〈Wn〉r

∣∣∣∣
6C

(
sup

06t6T
(|Y nt | + |fn(t; 0; 0)|) +

∫ T

0
|Znr | d〈Wn〉r

)
:

We set, for 06 t6T ,

Mt = E
(
�+

∫ T

0
f(r; Yr; Zr) dr |Ft

)
=Yt +

∫ t

0
f(r; Yr; Zr) dr=M0 +

∫ t

0
Z ′
r dWr

and we apply Theorem 5, taking into account Eqs. (10) and (11), to get(
Mn;

∫ ·

0
Znr dWn

r ; N
′n
)

→
(
M;
∫ ·

0
Zr dWr; 0

)
in S2(R3) and(∫ ·

0
Z ′n
r d〈Wn〉r ;

∫ ·

0
|Z ′n
r |2 d〈Wn〉r

)
→
(∫ ·

0
Z ′
r dr;

∫ ·

0
|Z ′
r |2 dr

)
as n→ ∞ in S2(R) ×S1(R).

We deduce from the previous convergence that

sup
06t6T

|Y ′n
t − Y ′

t | → 0 in S2(R):

Since we have already proved that

sup
06t6T

∣∣∣∣∫ t

0
fn(r; Y nr−; Z

n
r ) d〈Wn〉r −

∫ t

0
f(r; Yr; Zr) dr

∣∣∣∣→ 0

in L2. This concludes the proof.

5. Examples

5.1. Discretization of Brownian motion

In this section, we give a special emphasis to the case of the discretization of
Brownian motion which is in fact a attempt to write down an Euler scheme for BSDEs
as mentioned in the introduction. This example can be handled by Theorem 12 as we
will see in the sequel.

Let us start with the setup: W is a Brownian motion and {Ft}06t6T denotes its
augmented @ltration. We will assume in this section that
(i) f : [0; T ] × R× R× R→ R be a continuous function such that there exists K s.t.

for all t,

∀(x; y; z); (x′; y′; z′);

|f(t; x; y; z) − f(t; x′; y′; z′)|6K(|x − x′| + |y − y′| + |z − z′|);

(ii) � be square integrable FT -random variable.



244 P. Briand et al. / Stochastic Processes and their Applications 97 (2002) 229–253

We denote by (E) this assumption.
We consider {(Yt; Zt)}06t6T the solution to the BSDE

Yt = �+
∫ T

t
f(r;Wr; Yr; Zr) dr −

∫ T

t
Zr dWr; 06 t6T: (12)

We want to construct an approximation of this solution, say {(Y nt ; Z
n
t )}06t6T , in the

spirit of the approximation of the solution to a SDE by the Euler scheme. To do this,
let us consider (3n)n a re@ning sequence of partitions of [0; T ] such that mesh(3n) → 0.
By Wn = {Wn

t }06t6T we denote the discretization of W associated to 3n namely, if
3n = (tnk )k=0;pn t

n
0 = 0, tnpn =T ,

Wn
t =Wtnk ; if tnk 6 t ¡ tnk+1; W n

T =WT ;

so that Wn is a cSadlSag martingale. {Fn
t }06t6T stands for the @ltration generated

by Wn.
A naive idea consists in trying to solve the following equation, where we write Wn

k
in place of Wn

tnk
and so on:

Y nk =Y nk+1 + f(tnk+1; W
n
k ; Y

n
k ; Z

n
k )(tnk+1 − tnk ) − Znk (Wn

k+1 −Wn
k );

where Y nk+1 is Fn
tnk+1

-measurable. The unknowns (Y nk ; Z
n
k ) are required to be Fn

tnk
-

measurable. Thus if we want to solve the previous equation, we @rst set

Znk =
1

tnk+1 − tnk
E(Y nk+1(Wn

k+1 −Wn
k ) |Fn

tnk
); (13)

the last formula being obtained by multiplying the equation by (Wn
k+1 −Wn

k ) and then
take the conditional expectation w.r.t Fn

tnk
. To @nd Y nk , we use a @xed point argument

which requires mesh(3n)K ¡ 1 in order to solve the equation

Y nk = E(Y nk+1 |Fn
tnk

) + (tnk+1 − tnk )f(tnk+1; W
n
k ; Y

n
k ; Z

n
k ): (14)

However, there is a drawback: the equation has no reason to be satis@ed since the
predictable representation property does not hold for Wn. Indeed, in the discrete case, a
real martingale with independent increments has the predictable representation property
if and only if the increments are supported by two points. It follows that, for the BSDE
(2), we have to add an orthogonal martingale term so that the equation we really
solve is

Y nk = Y nk+1 + f(tnk+1; W
n
k ; Y

n
k ; Z

n
k )(tnk+1 − tnk ) − Znk (Wn

k+1 −Wn
k ) − (Nn

k+1 − Nn
k );

k = 0; pn − 1; (15)

with the requirement that Nn is a cSadlSag martingale orthogonal to Wn with Nn
0 = 0. Of

course, we have to specify the value of Y n at time T . In order to cover all cases, we
choose �n to be E(� |Fn

T ). We can remark that if � is given as g(W ) with a smooth
g then we can take �n as g(Wn). Nevertheless, our @rst choice of �n is not so bad.
Indeed, since Proposition 3 ensures that we have weak convergence of the @ltration
{Fn

t }06t6T to {Ft}06t6T which implies that �n goes to � in L2. For solving Eq. (15),
we use (13) and (14) and then set Nn

k+1 −Nn
k =Y nk+1 −Y nk −Znk (Wn

k+1 −Wn
k ). If we set

moreover,

Y nt =Y nk ; Nn
t =Nn

k ; if tnk 6 t ¡ tnk+1; Zntnk+1
=Znk ;
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then we obtain exactly the solution of the BSDE (2) (the support of Zn is the
point of 3n).

We have 〈Wn〉t = tnk on [tnk ; t
n
k+1[ so that the assumption (H1) (ii) is satis@ed with

�(x) = x and an = mesh(3n). Hence the assumptions (H1), (H2) and (H3) are satis@ed.
Thus we have(

|Y nt − Yt |2;
∣∣∣∣∫ t

0
Znr d〈Wn〉r −

∫ t

0
Zr dr

∣∣∣∣2 ;
∣∣∣∣∫ t

0
|Znr |2 d〈Wn〉r −

∫ t

0
|Zr|2 dr

∣∣∣∣ ; |Nn
t |2
)

tends to 0 as n→ ∞ in S1(R4).
If we de@ne Znt for all t ∈ [0; T ], by setting

Zn0 = 0; Znt =Znk ; if tnk ¡ t6 tnk+1;

we deduce, from these uniform (in t) convergences, that

sup
06t6T

∣∣∣∣∫ t

0
Znr dr −

∫ t

0
Zr dr

∣∣∣∣ P→0;

sup
06t6T

∣∣∣∣∫ t

0
|Znr |2 dr −

∫ t

0
|Zr|2 dr

∣∣∣∣ P→0:

Extracting a subsequence (still indexed by n), we have for almost every !,

sup
06t6T

∣∣∣∣∫ t

0
Znr (!) dr −

∫ t

0
Zr(!) dr

∣∣∣∣→ 0;

sup
06t6T

∣∣∣∣∫ t

0
|Znr |2(!) dr −

∫ t

0
|Zr|2(!) dr

∣∣∣∣→ 0;

which implies the convergence of Zn· (!) to Z·(!) weakly in L2([0; T ]; 6). Since we
have the uniform integrability of the sequence

∫ T
0 |Znr |2 dr=

∫ T
0 |Znr |2 d〈Wn〉r , we @nally

get for this model

E
[

sup
t∈[0;T ]

|Y nt − Yt |2 +
∫ T

0
|Znr − Zr|2 dr + sup

t∈[0;T ]
|Nn

t |2
]
→ 0

as n tends to in@nity i.e. the convergence of the approximation to the solution in the
classical norm used for BSDEs. Let us resume what we have proved

Proposition 13. Let the assumption (E) hold. We consider Wn the discretization of
W associated to the grid 3n. Let (Y n; Zn; Nn) be the solution to the BSDE

Y nt = �n +
∫ T

t
f(r;W n

r ; Y
n
r−; Z

n
r ) d〈Wn〉r −

∫ T

t
Znr dWn

r − (Nn
T − Nn

t ); 06 t6T;

where �n = E(� |Fn
T ). Then we have when mesh(3n) → 0,

E
[

sup
t∈[0;T ]

|Y nt − Yt |2 +
∫ T

0
|Znr − Zr|2 dr + sup

t∈[0;T ]
|Nn

t |2
]
→ 0;

where (Y; Z) is the solution to the BSDE (12).
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5.2. The invariance principle

In Theorem 12, the BSDEs (1) and (2) were solved on the same probability space.
But, we can also consider these equations on di$erent probability spaces and obtain
the convergence of solutions in law. As an example, we will treat the case of the
invariance principle which is a generalization of Corollary 3:3 in Briand et al. (2001).

Let us consider a standard real Brownian motion W de@ned on a probability space
and a sequence of independent and identically distributed real random variables {7k}k¿1

de@ned on a possibly di$erent probability space. We assume that 71 is in L2+$ for some
$¿ 0 with E[71] = 0 and E[|71|2] = 1. We de@ne, for each n, the scaled random walks

Snt =
1√
n

[nt]∑
k=1

7k ; 06 t6T:

We denote by D (resp. B) the space of cSadlSag functions from [0; T ] in R (resp. lSadcSag)
endowed with the topology of uniform convergence and we assume that:
(H4) There exists K¿ 0 such that:

(i) g :D → R is K-Lipschitz;
(ii) f : [0; T ] × B × R × R → R is continuous and, for each t, for each X ∈B,

f(t; X; y; z) depends on X only up to time t, and moreover

|f(t; X; y; z) − f(t; X ′; y′; z′)|6K
(

sup
06s6t

|Xs − X ′
s | + |y − y′| + |z − z′|

)
;

for all (X; X ′)∈B, for all (y; z), (y′; z′).
Let {(Yt; Zt)}06t6T be the solution to the BSDE

Yt = g(W ) +
∫ T

t
f(r;W; Yr; Zr) dr −

∫ T

t
Zr dWr; 06 t6T;

and let {(Y nt ; Z
n
t ; N

n
t )}06t6T be the solution to the discrete BSDE

Y nt = g(Sn) +
∫ T

t
f(r; Sn−; Y

n
r−; Z

n
r ) d〈Sn〉r −

∫ T

t
Znr dSnr −

∫ T

t
dNn

r ; 06 t6T:

We work with the natural @ltrations of Sn and W . Let us mention that, in this context,
Nn ≡ 0 if and only if the real random variable 71 takes only two values. We have the
following result

Corollary 14. Let the assumptions (H4) hold. The sequence {(Y n;
∫ ·

0 Z
n
r dSnr ; N

n)}n
converges in law to (Y;

∫ ·
0 Zr dWr; 0) for the topology of uniform convergence on

D(R3).

Proof. Let us notice that the laws of the solutions (Y; Z) and (Y n; Zn; Nn) to the previ-
ous BSDEs depend only on (PW ; g−1(PW ); f) and (PSn ; g−1(PSn); f) where g−1(PW )
(resp. g−1(PWn)) is the law of g(W ) (resp. g(Sn)). So, as far as the convergence in
law is concerned, we can consider these equations on any probability space.

But, from Donsker’s theorem and Skorokhod representation theorem, there exists a
probability space, with a Brownian motion W and a sequence of i.i.d. sequences (7n)n
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such that the processes

Wn
t =

1√
n

[nt]∑
k=1

7nk ; 06 t6T;

satisfy

sup
06t6T

|Wn
t −Wt | → 0; as n→ ∞;

in probability as well as in L2 since 7 is in L2+$.
It remains to solve the BSDEs on this space with respect to the @ltrations generated

by Wn and W and to apply Theorem 12 to obtain the convergence of (Y n;
∫ ·

0 Z
n
r dWn

r ; N
n)

to (Y;
∫ ·

0 Zr dWr; 0) in S2(R3). Indeed, (H1)(ii) is satis@ed with �(x) = x and an = 1=n
since 〈Wn〉t = [nt]=n.

This convergence implies the convergence of {(Y n;
∫ ·

0 Z
n
r dSnr ; N

n)}n to (Y;
∫ ·

0 Zr
dWr; 0) in law for the topology of uniform convergence on D(R3).

5.3. Other examples

5.3.1. Approximation by di>usions
We give an example where the approximation of the Brownian motion does not

come from a discrete model. Here, we are on a @xed complete probability space. Let
us consider �n :R → R which is bounded by K and K-Lipschitz. We assume that
�n → 1 uniformly on compact sets of R. Wn is the solution to the SDE

Wn
t =

∫ t

0
�n(Wn

r ) dWr; t¿ 0:

It follows from stability results on SDEs see e.g. (Protter, 1990, p. 207) that {Wn
t }06t6T

converges to {Wt}06t6T in Sp(R) for each real p¿ 1. The assumption (H1)(ii) is
satis@ed with �(x) =Kx and an = 0.

Thus, we can apply Theorem 12 to this situation if for instance (H4) is satis@ed.

5.3.2. Approximation by Poisson processes
For this last example, we consider a Poisson process {Pt}t¿0 with intensity 1 and

we de@ne a process {Wn
t }06t6T as follows

Wn
t =

1√
n

(Pnt − nt); 06 t6T:

The martingale {Wn
t }06t6T has the predictable representation property and converges

weakly to a Brownian motion {Wt}06t6T .
Let us consider {Y nt ; Znt }06t6T (there is no Nn here because Wn has the predictable

representation property) the solution to the BSDE

Y nt = g(Wn) +
∫ T

t
f(r;W n

−; Y
n
r−; Z

n
r ) dr −

∫ T

t
Znr dWn

r ; 06 t6T:

Under the assumption (H4), we can prove that the sequence {(Y nt ;
∫ t

0 Z
n
r dWn

r )}06t6T

converges in law for the topology of uniform convergence to the solution
{(Yt;

∫ t
0 Zr dWr)}06t6T to the BSDE (12) with �= g(W ).

The method of proof is the same as in Section 5.2 since 〈Wn〉t = t.
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6. Concluding remark

A possible extension of this work consists in replacing the standard Brownian motion
by a more general martingale. If this martingale is assumed to be continuous and to
have the predictable representation property, the results of the paper still hold under
the property of convergence of @ltrations. However, in this context, we do not know if
the result of Proposition 3 concerning the weak convergence of @ltrations still holds.
Nevertheless, this property is satis@ed in many examples: see e.g. (Coquet et al., 2001,
Propositions 1–6).

The possibility of further extension lies on the corresponding extension of
Theorem 5. But this seems to be a diPcult problem as pointed out in Jacod et al.
(2000).
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Appendix A. Theorem 1, Proposition 3: proofs

In this section, we give the proof of Theorem 1 and the proof of Proposition 3. Let
us @rst recall the statement.

Theorem 1. Let {X n
t }06t6T be a sequence of c4adl4ag {Fn

t }06t6T -integrable processes
with 6nite variation and X n

0 = 0 which converges in S1(R) to the continuous
{Ft}06t6T -adapted process {Xt}06t6T . In addition, we assume that { TX

n
t }06t6T , TX

n
t =

Var(X n)t =
∫ t

0 | dX n
s |, is C-tight, and the variables TX

n
T are uniformly integrable.

Then the predictable compensator {Pnt }06t6T of {X n
t }06t6T converges to {Xt}06t6T

in S1(R).

Proof. Firstly, let us show that the jumps of Pn go to 0 in ucp. Indeed, \Pn is indistin-
guishable from the predictable projection of \X n (see e.g. Jacod and Shiryaev, 1987,
p. 33); this means that, for each predictable stopping time #, \Pn# = E(\X n

# |Fn
#−).

Let us @x /¿ 0 and consider the following stopping time #= inf{t ¿ 0; |\Pnt |¿ /}∧
T . Since {t ¿ 0; |\Pnt |¿ /} is a @nite set (Pn is a process with @nite variation),
<#== {(!; #(!)); !∈�} is a subset of H = {(!; t); |\Pnt |¿ /}∪{(!; T ); !∈�}. Since
# is the d,ebut of the predictable set H and <#= ⊂ H , # is a predictable stopping time:
see e.g. (Dellacherie and Meyer, Remark (d) after the corrections) or (Jacod, 1979,
Theorem 1:14). Thus, we have

P
(

sup
t∈[0;T ]

|\Pnt |¿ /

)
=P(|\Pn# |¿ /) =P{|E(\X n

# |Fn
#−)|¿ /};
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this inequality yields

P
(

sup
t∈[0;T ]

|\Pnt |¿ /

)
6 E

[
sup
t∈[0;T ]

|\X n
t |
]/

/;

which tends to 0 since X n converges in S1(R) to the continuous process X .
To get the C-tightness of the sequence (Pn), it is suPcient to prove that this sequence

is D-tight. For this, we will use Aldous’ criterion; see e.g. (Jacod and Shiryaev, 1987,
p. 320). Note @rst that, by construction, if we denote by Pn+ and Pn− the predictable
compensators of the increasing processes ( TX

n
+ X n)=2 and ( TX

n − X n)=2, then Pn+ and
Pn− are increasing and Pn =Pn+ − Pn−. This implies that the process Vn − Var(Pn) is
increasing where Vn

s = (Pn+ +Pn−)s. Let us @x �¿ 0. If � and # are two stopping times
such that 06 �6 #6 � + �6T , we have, since =�; #= is predictable and Pn is cSad,

E[|Pn# − Pn�|]6 E
[∫

1�¡t6# dVar(Pn)t

]
6 E

[∫
1�¡t6# dVn

t

]
:

On the other hand, Vn =Pn+ + Pn− is the predictable compensator of TX
n

and thus

E[|Pn# − Pn�|]6 E[ TX
n
# − TX

n
�] = E

[∫
1�¡t6# dVn

t

]
;

the right-hand side tends uniformly to 0 as � tends to 0 since TX
n

is C-tight and
uniformly integrable. Hence Pn is D-tight and thus C-tight.

De@ne the {Fn
t }06t6T -martingale {Mn

t }06t6T by setting, for 06 t6T , Mn
t =X n

t −
Pnt . The sequence (X n; Pn;Mn) is C-tight. Consider a limit point of {X n; Pn;Mn}, say
(X; P;M) which is a continuous process in view of the C-tightness. In order to verify
that M is a martingale it is enough to check, according to Proposition 1:12 in Jacod
and Shiryaev (1987, p. 484), that supt |Mn

t | is uniformly integrable. To see this, let us
remark @rst that supt |X n

t | is uniformly integrable since X n converges to X in S1(R).
Moreover supt |Pnt | is also uniformly integrable; indeed from Dellacherie and Meyer
(1980, remarques 100, p. 182), we have E[(Vn

T − 6)+]6 E[ TX
n
T 1VnT¿6]. But we know

already that TX
n
T is uniformly integrable and thus we have, since E[Vn

T ] = E[ TX
n
T ],

lim
6→∞

sup
n
E[(Vn

T − 6)+] = 0;

which gives the uniform integrability of Vn
T (Lemma 1:11 in Jacod and Shiryaev (1987,

p. 482); since, as we seen before, Vn
T ¿Var(Pn)T ¿ supt |Pnt | we get the uniform

integrability of supt |Pn|.
Using Skorokhod representation theorem, we may construct a probability space on

which (X̃
n
; P̃

n
; M̃

n
) converges to (X̃ ; P̃; M̃) in ucp (the converging subsequence is still

indexed by n) where (X̃
n
; P̃

n
; M̃

n
) (resp. (X̃ ; P̃; M̃)) and (X n; Pn;Mn) (resp. (X; P;M))

have the same law. We have X̃ = M̃ + P̃ and all these processes are predictable (since
continuous and adapted) w.r.t. {Gt}06t6T the @ltration of the past of (X̃ ; P̃). Since X̃
and P̃ are processes with @nite variation paths, the uniqueness of the {Gt}06t6T -Doob-
Meyer decomposition leads to X̃ = P̃, M̃ = 0.

It follows that Mn converges in distribution to 0 for the topology of uniform con-
vergence and then that Mn converges to 0 in ucp. Hence Pn =X n −Mn converges in
ucp to X . We get also the convergence in S1(R) since we have already proved that
supt |Pnt | is uniformly integrable.
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Remark A.1. It is worth noticing that the continuity of the limit X is very important
in the previous result. One can construct a sequence of processes (X n) such that X n

converges to X in D, X n is bounded by 1 and for which the predictable compensator
Pn does not converge. We refer to Jacod et al. (1983, Counter-example 2.9).

We proceed now to the proof of Proposition 3 that we also recall.

Proposition 3. Let us consider, on the same probability space (�;F;P), a standard
Brownian motion {Wt}06t6T with its natural 6ltration {Ft}06t6T , a sequence of
6ltrations {Fn

t }06t6T and a sequence {Wn
t }06t6T of square integrable

{Fn
t }06t6T -martingales. We suppose that Wn converges to W in S2(R).
Then {Fn

t }06t6T weakly converges to {Ft}06t6T .

Proof. We start the proof by showing that we can reduce to the case where supN 〈Wn〉T
6M for some real M . This is done in two steps. Let us show @rstly that we can assume
that supn supt |\Wn

t |6 2. Indeed, let us denote Ant =
∑

s6t \Wn
s 1|\Wn

s |¿1 and let us

consider Ãn its predictable compensator. We write Wn as follows:

Wn
t =Ant − Ãnt +Mn

t ; 06 t6T:

An− Ãn and Mn are {Fn
t }06t6T -martingales and it is not hard to check that supt |\Ãnt |

6 1, supt |\Mn
t |6 2 (see e.g. (Jacod, 1979, p. 30–31)). Since E[|ÃnT |2]6 4E[|AnT |2]

(see e.g. Dellacherie and Meyer, 1980, Eq. (100:1)), we have moreover

E[[An − Ãn]T ]6 10E
[∑
s6T

(\Wn
s )21|\Wn

s |¿1

]
6 10E[[Wn]T ]:

Hence An−Ãn and Mn are square integrable martingales. Moreover, the convergence of
Wn to W in S2(R) together with the continuity ofW imply that

∑
s6T (\Wn

s )2 1|\Wn
s |¿1

converges to 0 in probability as well as in L1; for the convergence in L1, the sum is
bounded by [Wn]T which converges to [W ] in L1 since Wn converges to W in S2(R).
Thus, An − Ãn converges to 0 and Mn to W both of them in S2(R). So, we will
assume now that the jumps of Wn are bounded by 2.

Let us consider, for each n the {Fn
t }t∈[0;T ]-stopping time Tn = inf{t ∈ [0; T ]; 〈Wn〉t

¿ 2T} (inf ∅=T ). Since the jumps of Wn are bounded by 2, those of [Wn] are
bounded by 4 and thus the jumps of 〈Wn〉 are also bounded by 4. It follows that

〈Wn;Tn〉T = 〈Wn〉Tn6 2T + 4:

But since 〈Wn〉t → t, it is clear that P[Tn¡T ] → 0 and that Wn;Tn converges to W
in S2(R). Thus we will assume that supN 〈Wn〉T is bounded by some real M .

Using Lemma 3 from Coquet et al. (2001), it is suPcient to prove that, for k ∈N∗

and (61; : : : ; 6k)∈Rk ,

E
(

exp

{
i

k∑
l=1

6lWtl

}∣∣∣∣∣Fn
·

)
→ E

(
exp

{
i

k∑
l=1

6lWtl

}∣∣∣∣∣F·

)
in ucp:
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Since the limit process is a continuous martingale, it is enough to prove pointwise
convergence (see Aldous, 1989) that is to say, for each t ∈ [0; T ],

E
(

exp

{
i

k∑
l=1

6lWtl

}∣∣∣∣∣Fn
t

)
→ E

(
exp

{
i

k∑
l=1

6lWtl

}∣∣∣∣∣Ft

)
in probability:

Moreover, as we have the convergence of Wn to W in ucp, we can replace W by Wn

in the @rst conditional expectation, and @nally we have to prove that, for each real 6
and for each (s; t) s.t 06 s¡ t6T , we have, in probability, as n→ ∞,

E(exp{i6(Wn
t −Wn

s )} |Fn
s ) → E(exp{i6(Wt −Ws)} |Fs) = exp{−62(t − s)=2}:

If s¿ 0, we can consider TW
n
t =Wn

t+s−Wn
s , TWt =Wt+s−Ws, TF

n
t =Fn

t+s and TFt =Ft+s,
to reduce to the case s= 0. So we will assume, without loss of generality, that s= 0.

To prove that, let us @x (6; t) and let us denote E(i6Wn) the Dol,eans-exponential
of i6Wn, namely, for 06 t6T ,

E(i6Wn)t = exp{i6Wn
t + 62〈Wn;c〉t =2}

∏
0¡u6t

(1 + i6\Wn
u )e−i6\Wn

u :

E(i6Wn) is a square integrable complex {Fn
t }06t6T -martingale and moreover there

exists a constant C such that

∀n∈N; ∀06 t6T; E[|E(i6Wn)t |2]6C:

Indeed, {E(i6Wn)t}06t6T is a local martingale and we have E(i6Wn)0 = 1. Moreover,

|E(i6Wn)t |2 = exp{62〈Wn;c〉t}
∏

0¡u6t

(1 + 62|\Wn
u |2) =E(62[Wn])t :

Now [Wn] is an integrable semimartingale whose decomposition is [Wn] = ([Wn] −
〈Wn〉)+〈Wn〉. It follows from Jacod (1979, Corollaire 6:35) that E(62[Wn]) has the fol-
lowing multiplicative decomposition E(62[Wn]) =E(N )E(62〈Wn〉) where N is a local
martingale (N is given explicitly by the formula N· =

∫ ·
0 6

2(1 + 62\〈Wn〉s)−1d([Wn]−
〈Wn〉)s). Since 〈Wn〉 is an increasing process, we have E(62〈Wn〉)t6 exp(62〈Wn〉t)
6C in view of the boundedness of 〈Wn〉T . Thus,

|E(i6Wn)t |26C E(N )t :

Moreover, E(N ) is a local martingale with E(N )0 = 1. Fatou’s lemma implies that

∀t¿ 0; E[|E(i6Wn)t |2]6C:

It follows that {E(i6Wn)t}06t6T is a square integrable martingale; then E(E(i6Wn)t |
Fn

0) = 1.
Let us set

Un = exp{−62〈Wn;c〉t =2}
∏

0¡u6t

(1 + i6\Wn
u )−1ei6\Wn

u ;

and write exp{i6Wn
t }=E(i6Wn)t Un. With this notation we have to prove that

E(exp{i6Wn
t } |Fn

0) = E(E(i6Wn)t Un |Fn
0) → exp{−62t=2}:
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We have

E[|E(E(i6Wn)t Un |Fn
0) − e−6

2t=2|]6 E[|E(i6Wn)t (Un − e−6
2t=2)|]

6 E[|E(i6Wn)t |2]1=2E[|Un − e−6
2t=2|2]1=2:

Notice that obviously |Un|6 1. Let us prove that Un converges to exp{−62t=2} in
probability. For this we write

Un = exp{−62[Wn]t =2}
∏

0¡u6t

(1 + i6\Wn
u )−1ei6\Wn

u e6
2|\Wn

u |2=2:

Since Wn converges to W in ucp, [Wn] converges to t in ucp and then

exp{−62[Wn]t =2} → exp{−62t=2} in probability:

It remains only to prove that, as n→ ∞,∏
0¡u6t

(1 + i6\Wn
u )−1ei6\Wn

u e6
2|\Wn

u |2=2 → 1 in probability:

Let us write∏
0¡u6t

(1 + i6\Wn
u )−1ei6\Wn

u e6
2|\Wn

u |2=2

= exp

{
−
∑

0¡u6t

(log(1 + i6\Wn
u ) − i6\Wn

u − 62|\Wn
u |2=2)

}
:

Since we have, for all x∈R, |log(1 + ix) − ix − x2=2|6 |x|3=3, we get the inequality∑
0¡u6t

|log(1+i6\Wn
u )−i6\Wn

u−62|\Wn
u |2=2|6C sup

06u6T
|\Wn

u |
∑

0¡u6T

|\Wn
u |2

6C sup
06u6T

|\Wn
u | [Wn]T :

Since Wn converges to W in ucp and [Wn]T converges to T in probability we deduce
that the last sum goes to 0 in probability. The proof of this proposition is complete.
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