Université de Rennes 1 Année 2020/2021

Master 2

Théorie Ergodique et Systèmes Dynamiques Exercise sheet 4

1 - (Weak mixing) Let (X, \mathcal{B}, μ, T) be a measure preserving system. Show that the following are equivalent:

(i) T is weakly mixing.

(ii) For every ergodic measure preserving system (Y, \mathcal{C}, ν, S) , the product system $(X \times Y, \mathcal{B} \times \mathcal{C}, \mu \times \nu, T \times S)$ is ergodic.

2 - (Weak mixing, again) Let (X, \mathcal{B}, μ, T) be a probability measure preserving system. Show that the following properties are equivalent:

(i) T is weakly mixing

(ii) For any $A, B, C \in \mathcal{B}$ with positive measure, there exists $n \ge 1$ such that $T^{-n}A \cap B \neq \emptyset$ and $T^{-n}A \cap C \neq \emptyset$.

3 - (Strong mixing of torus automorphisms) For $d \ge 1$, let $X = \mathbf{R}^d / \mathbf{Z}^d$ be the *d*-dimensional torus, equipped with the Lebesgue measure λ . For $A \in GL_d(\mathbf{Z})$, let $T_A : X \to X$ the associated automorphism of X.

(i) Assume that T_A is ergodic. Show that T_A is strongly mixing. (*Hint:* Fourier analysis).

(ii) Let $x \in \mathbf{Q}^d / \mathbf{Z}^d$. Show that x is T_A -periodic.

(iii) Show that T_A is not uniquely ergodic.

4 – (Birkhoff sums and unique ergodicity) Let $X = \mathbf{S}^1 \times [0, 1]$. For $\alpha \in \mathbf{R} \setminus \mathbf{Q}$, let $T : X \to X$ be defined by $T(x, t) = (x + \alpha, t)$. (i) Show that, for every $f \in C(X)$, the Birkhoff sums

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f \circ T^n$$

converge uniformly on X.

(ii) Show that T is not uniquely ergodic.

5-(Tent map and logistic map) Let $S : [0,1] \rightarrow [0,1]$ be the "tent" map defined by

$$Sx = \begin{cases} 2x & \text{if } x \in [0, 1/2] \\ 2 - 2x & \text{if } x \in [1/2, 1]. \end{cases}$$

Let λ be the Lebesgue measure on [0, 1].

(i) Check that
$$\lambda$$
 is S-invariant.

(ii) Let $E_2 : [0,1] \to [0,1], x \mapsto \{2x\}$. Show that $([0,1], E_2, \lambda)$ is strongly mixing.

(iii) Show that $S^{n+1} = S \circ E_2^n$ for every $n \ge 1$.

(iv) Show that the probability measure preserving system $([0, 1], S, \lambda)$ is strongly mixing.

Consider now the "logistic" map

$$T: [0,1] \to [0,1], \qquad x \mapsto 4x(1-x).$$

(v) Check that, for every $\theta \in \mathbf{R}$ and $n \in \mathbf{N}^*$, we have $T^n(\sin^2 \theta) = \sin^2(2^n \theta)$. (vi) For $n \ge 1$, determine the points $x \in [0, 1]$ of period n for T. Deduce that the T-periodic points are dense in [0, 1].

(vii) Let $\varphi : [0,1] \to [0,1]$ be the bijection defined by $\varphi(x) = \sin^2(\pi x/2)$. Check that $T \circ \varphi = \varphi \circ S$.

Let μ be the probability measure defined on the Borel subsets of [0, 1] by

$$\mu(A) = \frac{1}{\pi} \int_{A} \frac{dx}{\sqrt{x(1-x)}}$$

(viii) Show that μ is *T*-invariant.

(ix) Show that the probability measure preserving system $([0, 1], T, \mu)$ is ergodic.

(x) Let $\alpha \in [0, 1]$. Show that, for λ -almost every $x \in [0, 1]$, we have

$$\lim_{N \to +\infty} \frac{1}{N} \operatorname{Card}\{n : 1 \le n \le N, T^n x \le \alpha\} = \frac{2}{\pi} \operatorname{Arcsin}(\sqrt{\alpha}).$$