Université de Rennes 1 Année 2020/2021

Master 2

Théorie Ergodique et Systèmes Dynamiques Exercise sheet 3

1 - (Ergodicity of an induced system) - Let (X, \mathcal{B}, μ, T) be a probability measure preserving system. Let $A \in \mathcal{B}$ with $\mu(A) > 0$, and consider the induced system $(A, \mathcal{A}, \mu_A, T_A)$, as in Exercise 7 of Sheet 1. Assume that T is ergodic. Show that T_A is ergodic. (Hint: consider the partition of A by the sets $A_n = \{x \in A \mid n_A(x) = n\}$, where $n_A(x) = \min\{n \ge 1 \mid T^n x \in A\}$.)

2 - (Invertible extension) - Let (X, \mathcal{B}, μ, T) be a probability measure preserving system. Define a new system $(\widetilde{X}, \widetilde{\mathcal{B}}, \widetilde{\mu}, \widetilde{T})$ as follows:

- $\widetilde{X} = \{(x_n)_{n \in \mathbf{Z}} : x_n \in X, x_{n+1} = Tx_n, \forall n \in \mathbf{Z}\};$
- $\widetilde{T}: \widetilde{X} \to \widetilde{X}, \qquad \widetilde{T}((x_n)_{n \in \mathbf{Z}}) = (x_{n+1})_{n \in \mathbf{Z}};$
- $\widetilde{\mathcal{B}}$ is the σ -algebra generated by the sets $p_n^{-1}(A)$ with $A \in \mathcal{B}$, where $p_n : \widetilde{X} \to X$ is given by $p_n((x_k)_{k \in \mathbf{Z}}) = x_n$ for $n \in \mathbf{Z}$;
- $\widetilde{\mu}$ is the probability measure on $\widetilde{\mathcal{B}}$ defined by $\widetilde{\mu}(p_n^{-1}(A)) = \mu(A)$.

(i) Show that \widetilde{T} preserves $\widetilde{\mu}$, that \widetilde{T} is invertible, and that $(\widetilde{X}, \widetilde{\mathcal{B}}, \widetilde{\mu}, \widetilde{T})$ is an extension of the system (X, \mathcal{B}, μ, T) .

(ii) Let (Y, \mathcal{A}, ν, S) be an extension of the system (X, \mathcal{B}, μ, T) with S invertible. Show that $(\widetilde{X}, \widetilde{\mathcal{B}}, \widetilde{\mu}, \widetilde{T})$ is a factor of (Y, \mathcal{A}, ν, S) .

(iii) Let $X_2 = \mathbf{S}^1$ and $T_2 : X \to X, x \mapsto 2x$. Show that \widetilde{X}_2 is an abelian compact group

(iv) (*) Let $\mathbf{Z}[1/2]$ be the subring of \mathbf{R} generated by \mathbf{Z} and 1/2. Let \mathbf{Q}_2 be the field of 2-adic numbers and \mathbf{Z}_2 the subring of 2-adic integers.

Show that the image of the injective homomorphism

$$\delta : \mathbf{Z}[1/2] \to \mathbf{R} \times \mathbf{Q}_2, \ r \mapsto (r, r)$$

is a discrete subgroup of $\mathbf{R} \times \mathbf{Q}_2$. Deduce from this that \widetilde{X}_2 can be identified with the compact abelian group $(\mathbf{R} \times \mathbf{Q}_2)/\delta(\mathbf{Z}[1/2])$. Describe \widetilde{T}_2 in this identification. **3**- (Normal numbers) Let $x \in [0, 1]$ with unique binary expansion $0, x_1x_1, x_3 \dots$ with $x_n \in \{0, 1\}$. Then x is said to be normal (in base 2) if

$$\lim_{N \to \infty} \frac{1}{N} \operatorname{Card} \left\{ 1 \le n \le N \mid x_n = 0 \right\} = 1/2.$$

Show that Lebesgue almost every $x \in [0, 1]$ is normal.

4 - (Non hyperbolic torus automorphisms) For $d \ge 1$, let $X = \mathbf{R}^d / \mathbf{Z}^d$ be the *d*-dimensional torus, equipped with the Lebesgue measure λ . For $A \in GL_d(\mathbf{Z})$, let $T_A : X \to X$ be the associated automorphism. (i) Assume that T_A is ergodic and that $d \le 3$. Show that A has no eigenvalue

(1) Assume that T_A is ergodic and that $d \leq 3$. Show that A has no eigenvalue of absolute value 1.

Let $A \in SL_4(\mathbf{Z})$ be the matrix

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 8 & -6 & 8 \end{array}\right).$$

(ii) Show that A has two eigenvalues with of absolute value 1.

(iii) Show that T_A is ergodic.

(*Hint:* show that the characteristic polynomial of A is irreducible over \mathbf{Q} .)

5 - (Weak mixing and non mixing of irrational rotations) Let X = [0,1] be equipped with the Lebesgue measure λ . Let $\alpha \in \mathbf{R} \setminus \mathbf{Q}$ and $R_{\alpha} : [0,1] \to [0,1]$, given by $R_{\alpha}(x) = \{x + \alpha\}$.

Show that R_{α} is not mixing.

6 - (Mixing of $\times 2$ -map) Let X = [0, 1] be equipped with the Lebesgue measure λ and $T_2 : X \to X$ defined by par $T_2x = \{2x\}$. Show that T_2 is mixing.

7 - (Mixing of Bernoulli shift) Let (Σ^+, μ, σ) be the one-sided Bernoulli shift, where $\Sigma^+ = \{0, 1\}^{\mathbf{N}}$ is equipped with the measure $\mu = \nu^{\otimes \mathbf{N}}$ defined on the σ -algebra generated by the cylinders, ν is the probability (1/2, 1/2) on $\{0, 1\}$ and σ is the shift $\sigma((a_i)_{i \in \mathbf{N}}) = (a_{i+1})_{i \in \mathbf{N}}$.

Show that σ is mixing.