Université de Rennes 1 Année 2020/2021

Master 2

Théorie Ergodique et Systèmes Dynamiques Exercise sheet 2

1 - (Shift and $\times 2$ -map) Let $X = S^1$ be equipped with the Lebesgue measure λ and $T: X \to X$ defined by $Tx = \{2x\}$. Let (Σ^+, μ, σ) be the one-sided Bernoulli shift, where $\Sigma^+ = \{0, 1\}^{\mathbb{N}}$ is equipped with the measure $\mu = \nu^{\otimes \mathbb{N}}$ defined on the σ -algebra generated by the cylinders, ν is the probability (1/2, 1/2) on $\{0, 1\}$ and σ is the shift $\sigma((a_i)_{i \in \mathbb{N}}) = (a_{i+1})_{i \in \mathbb{N}}$.

(i) Show that the systems (X, λ, T) and (Σ^+, μ, σ) are isomorphic

(ii) Determine the periodic points of σ and T.

2 - (Shift and Baker transformation) Let $X = S^1 \times S^1$, equipped with the Lebesgue measure λ . Let $T : X \to X$ be the baker transformation. Let $\Sigma = \{0, 1\}^{\mathbb{Z}}$ and $\varphi : \Sigma \to X$ the map defined by $\varphi(a) = (x, y)$ with

$$x = \sum_{i=0}^{\infty} \frac{a_{-i}}{2^{i+1}}, \qquad y = \sum_{i=1}^{\infty} \frac{a_i}{2^i}$$

for $a = (a_i)_{i \in \mathbf{Z}} \in \Sigma$.

Show that φ is an isomorphism between the two-sided Bernoulli shift (Σ, μ, S) and (X, λ, T) , where Σ is equipped with the measure $\mu = \nu^{\otimes \mathbf{Z}}$ defined on the σ -algebra generated by the cylinders with ν the probability (1/2, 1/2) on $\{0, 1\}$ and σ is the shift $\sigma((a_i)_{i \in \mathbf{Z}}) = (a_{i+1})_{i \in \mathbf{Z}}$.

3 - (Gauß map) Let $T: [0,1] \rightarrow [0,1]$ be the Gauß map defined by

$$T(x) = \begin{cases} \left\{\frac{1}{x}\right\} = \frac{1}{x} - \left[\frac{1}{x}\right] & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

($\{y\}$ and [y] denote the fractional and integer part of $y \in \mathbf{R}$, respectively).

Denote by λ the Lebesgue measure [0, 1] and let μ be the probability measure on [0, 1] with density $\frac{1}{\log 2} \frac{1}{1+x}$ with respect to λ .

(i) Show that $T^{-1}(]a, b[) = \bigcup_{n=1}^{\infty}]\frac{1}{n+b}, \frac{1}{n+a}[$ for every $0 \le a < b \le 1$.

(ii) Show that the Lebesgue measure λ is not *T*-invariant (Hint: you may consider $T^{-1}]0, 1/2[$).

(iii) Show that $\mu(T^{-1}(]a, b[)) = \mu(]a, b[)$ for every $0 \le a < b \le 1$ and deduce that μ is *T*-invariant.

4 - (Skew products) Let (X, B, μ, T) be a probability measure preserving dynamical system. Let ρ : X → S¹ be a measurable map. Let X̃ = X × S¹, μ̃ = μ ⊗ λ and T̃ : X̃ → X̃ given by T̃(x, y) = (Tx, y + ρ(x)).
(i) Show that T̃ preserves μ̃.

(ii) Show that (\tilde{X}, \tilde{T}) is an extension of (X, T) (that is, (X, T) is a factor of (\tilde{X}, \tilde{T})).

(iii) Let $X = S^1$, $T = R_{\alpha}$ for α irrational and $\rho(x) = x$. Show that (\tilde{X}, \tilde{T}) is ergodic.

5 - (Ergodic theorem for finite systems) Let $X = \{x_1, \ldots, x_r\}$ be a finite set and $\sigma : X \to X$ a permutation of X. Let $f : X \to \mathbb{C}$ and $x \in X$. (i) Assume that σ is a cycle. Show that

$$\lim_{N} \sum_{n=0}^{N-1} f(\sigma^{n}(x)) = \frac{1}{r} (f(x_{1}) + \dots + f(x_{r})).$$

(ii) Let σ be arbitrary. Determine the limit $\lim_{N} \sum_{n=0}^{N-1} f(\sigma^{n}(x))$.

6 - (L^p ergodic theorem) Let (X, \mathcal{B}, μ, T) be a probability measure preserving dynamical system. Let $p \in [1, \infty[$. For $f \in L^p(X, \mu)$ and $N \in \mathbf{N}^*$, let $f_N^+ \in L^p(X, \mu)$ be given by $f_N^+(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x)$.

(i) Show that, for every $f \in L^p(X, \mu)$, there exists a *T*-invariant function $f^* \in L^p(X, \mu)$ such that $\lim_{N \to +\infty} ||f_N^+ - f^*||_p = 0$.

[*Hint:* For p < 2, use the density of $L^2(X, \mu)$ in $L^p(X, \mu)$ and for p > 2 the density of $L^{\infty}(X, \mu)$ in $L^p(X, \mu)$.]

(ii) Does (i) remains true in the case $p = +\infty$?

7 - (Torus translation) For $d \ge 1$, let $X = S^1 \times \cdots \times S^1$ be the torus of dimension d, equipped with the Lebesgue measure λ . Let $\alpha_1, \ldots, \alpha_d \in \mathbf{R}$. Define $T: X \to X$ by

$$T(x_1,\ldots,x_d) = (x_1 + \alpha_1,\ldots,x_d + \alpha_d) \quad \text{mod} \quad 1.$$

Show that T is ergodic if and only if $1, \alpha_1, \ldots, \alpha_d$ are linearly independent over **Q**.