Université de Rennes 1-2015/2016

L3-Suites et séries de fonctions-Feuille de TD 2

Exercice 1 (Convergence simple et convergence uniforme) Pour tout $n \in \mathbb{N}$, soit $f_n : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f_n(x) = \frac{x}{nx^2 + 1}$.

- (i) Déterminer l'ensemble de convergence $E \subset \mathbf{R}$ de la suite de fonctions f_n ainsi que sa limite $f: E \to \mathbf{R}$.
- (ii) Soit $n \in \mathbf{N}$ fixé. Déterminer $\sup_{x \in E} |f_n(x) f(x)|$.
- (iii) La suite de fonctions f_n converge-t-elle uniformément vers f sur E?

Exercice 2 (Convergence simple et convergence uniforme) Pour tout $n \in \mathbb{N}$, soit $f_n : [0,1] \to \mathbb{R}$ la fonction définie par $f_n(x) = n(x^n - x^{n+1})$.

- (i) Déterminer l'ensemble de convergence $E \subset [0,1]$ de la suite de fonctions f_n ainsi que sa limite $f: E \to \mathbf{R}$.
- (ii) Montrer que la suite de fonctions f_n ne converge pas uniformément vers f sur E.
- (iii) Soit $a \in]0,1[$. Montrer que la suite de fonctions f_n converge uniformément vers f sur [0,a].

Exercice 3 (Intégrales de limites) Calculer la limite $\lim_{n\to+\infty} \int_E f_n(x)dx$ et la comparer avec l'intégrale $\int_E f(x)dx$ de la limite f pour les fonctions f_n de l'Exercice 6 de la feuille de TD 1 sur leur ensemble de convergence E.

Exercice 4 (Convergence d'une série de fonctions) Pour tout $n \in \mathbb{N}$, soit $u_n : \mathbb{R}^+ \to \mathbb{R}$ définie par $u_n(x) = e^{-nx}$.

- (i) Déterminer l'ensemble de convergence E de la série de fonctions de terme général u_n et calculer, pour tout $x \in E$, la somme S(x) de la série $\sum_{n>0} u_n(x)$.
- (ii) La série de terme terme général u_n converge-t-elle uniformément sur E?
- (iii) Soit a > 0. Montrer que la série de terme général u_n converge normalement sur $[a, +\infty]$.

Exercice 5 (*) Soit $(f_n)_n$ la suite de fonction définie sur [0,1], par récurrence, par $f_0(x) = x$ et $f_{n+1} = 2f_n(1 - f_n)$ pour $n \ge 0$.

- (i) Montrer que $(f_n)_n$ converge simplement sur [0,1] vers une fonction f qu'on déterminera.
- (ii) Soit $n \in \mathbb{N}$. Donner une expression simple pour $\frac{1}{2} f_n$ et retrouver le résultat (i).
- (iii) Montrer que $(f_n)_n$ converge uniformément sur tout intervalle fermé I contenu dans]0,1[. La convergence est-elle uniforme sur [0,1]?