Université de Rennes 1-Année 2015/2016 L3-Suites et séries de fonctions-Feuille de TD 1

Exercice 1. (Rappel: Terme général d'une série convergente)

Soit $(u_n)_{n \in \mathbb{N}}$ une suite de nombres complexes.

- (i) On suppose que la série de terme général u_n est convergente. Montrer que $\lim_n u_n = 0$. Indication: on observera que $u_n = S_n S_{n-1}$, où $S_n = \sum_{k=0}^n u_k$ est la n-ième somme partielle de la série.
- (ii) Donner des exemples de suites $(u_n)_{n\in\mathbb{N}}$ avec $\lim_n u_n = 0$ telles la série de terme général u_n n'est pas convergente.

Exercice 2. (Rappel : Critère de Leibniz) Soit (v_n) une suite décroissante de nombres réels positifs. On suppose que $\lim_{n\to+\infty}v_n=0$. On veut montrer que la série (dite alternée) de terme général $u_n:=(-1)^nv_n$ est convergente.

Soit S_n la n-ième somme partielle de la série de terme général u_n .

- (i) Montrer que la suite $(S_{2n})_{n \in \mathbb{N}}$ est décroissante.
- (ii) Montrer que la suite $(S_{2n+1})_{n \in \mathbb{N}}$ est croissante.
- (iii) Montrer que les suites $(S_{2n+1})_{n\in\mathbb{N}}$ et $(S_{2n})_{n\in\mathbb{N}}$ sont convergentes; notons S et S' leurs limites respectives.
- (iv) Montrer que S = S'.
- (v) Conclure.

Exercice 3. (Etude de la convergence de quelques séries) Etudier la convergence des séries suivantes de terme général u_n :

(i)
$$u_n = (-1)^n$$
 (ii) $u_n = \cos(1/n)$

(iii)
$$u_n = \frac{1}{2^n}$$
 (iv) $u_n = q^n$ $(q \in \mathbf{R})$

$$(v) u_n = \frac{1}{n} (vi) u_n = \frac{1}{n^2}$$

(vii)
$$u_n = \frac{(-1)^n}{\sqrt{n}}$$
 (viiii) $u_n = \frac{(-1)^n}{n^{3/2}}$

(ix)
$$u_n = \sin(1/n)$$
 (x) $u_n = \frac{1}{\log n}$

Exercice 4. (Etude de la convergence de quelques séries) Etudier la convergence des séries suivantes de terme général u_n :

(i)
$$u_n = n\sin(1/n)$$
 (ii) $u_n = (1/3)^{\sqrt{n}}$

(iii)
$$u_n = \frac{1}{n} \log \left(1 + \frac{1}{n} \right)$$
 (iv) $u_n = 1 - \cos(1/n)$

(v)
$$u_n = ne^{-\sqrt{n}}$$
 (vi) $u_n = \left(\frac{n}{n+1}\right)^{n^2}$

(vii)
$$u_n = (-1)^n \left(e - (1 + \frac{1}{n})^n \right)$$
 (viii) $u_n = \sin \sqrt{1 + n^2 \pi^2}$

Exercice 5. (Limite supérieure et limite inférieure d'une suite) On rappelle que la limite supérieure $\overline{\lim} u_n$ et la limite inférieure $\underline{\lim} u_n$ d'une suite $(u_n)_{n \in \mathbb{N}}$ de nombres réels sont les éléments dans $\mathbb{R} \cup \{\pm \infty\}$ définis par:

$$\overline{\lim} u_n = \lim_{n \to +\infty} \sup \{u_k | k \ge n\}, \qquad \underline{\lim} u_n = \lim_{n \to +\infty} \inf \{u_k | k \ge n\}.$$

- (i) Montrer que $\overline{\lim} u_n \in \mathbf{R}$ et $\underline{\lim} u_n \in \mathbf{R}$ si $(u_n)_n$ est bornée (c-à-d minorée et majorée).
- (ii) Déterminer $\underline{\lim}(-1)^n$ et $\overline{\lim}(-1)^n$.
- (iii) Déterminer $\underline{\lim}(-1)^n 1/n$ et $\overline{\lim}(-1)^n 1/n$.
- (iv) Déterminer $\underline{\lim} \cos(2n\pi/3)$ et $\overline{\lim} \cos(2n\pi/3)$.
- (v) Déterminer $\underline{\lim}(-1)^n n$ et $\overline{\lim}(-1)^n n$.
- (vi) Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée de nombres réels. Montrer que $\underline{\lim}u_n = \overline{\lim}u_n$ si et seulement si $(u_n)_n$ est convergente et que, dans ce cas, $\underline{\lim}u_n = \overline{\lim}u_n = \lim_{n \to +\infty}u_n$.
- (vii) Déterminer $\underline{\lim} n^{1/n}$ et $\overline{\lim} n^{1/n}$.
- (viii) Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée de nombres réels. Montrer que $\overline{\lim}u_n$ est la plus grande valeur d'adhérence de $(u_n)_n$ et $\underline{\lim}u_n$ sa plus petite valeur d'adhérence.

Exercice 6. (Etude de la convergence de suites de fonctions) Déterminer l'ensemble de convergence E et étudier la convergence simple et uniforme sur E de la suite des fonctions suivantes f_n défines sur [0,1] pour (i)-(iv) et $[0,+\infty[$ pour (v)-(viii):

$$(i) f_n(x) = \begin{cases} 1/n & \text{si } x \in [0, 1/n] \\ 0 & \text{si } x \in]1/n, 1] \end{cases}$$

$$(v) \qquad f_n(x) = \begin{cases} n & \text{si } x \in [0, n] \\ -n^2x + n^3 + n & \text{si } n \le x \le n + \frac{1}{n} \\ 0 & \text{si } x \ge n + \frac{1}{n} \end{cases}$$

$$(ii) f_n(x) = \begin{cases} 1 & \text{si } x \in [0, 1/n] \\ 0 & \text{si } x \in]1/n, 1 \end{cases}$$
 (vi)
$$f_n(x) = \begin{cases} 0 & \text{si } 0 \le x \le n - \frac{1}{n} \\ nx - n^2 + 1 & \text{si } n - \frac{1}{n} \le x \le n \\ -nx + n^2 + 1 & \text{si } n \le x \le n + \frac{1}{n} \\ 0 & \text{si } x \ge n + \frac{1}{n} \end{cases}$$

$$(iii) f_n(x) = \begin{cases} n & \text{si } x \in [0, 1/n] \\ 0 & \text{si } x \in]1/n, 1 \end{cases}$$
 (vii)
$$f_n(x) = \begin{cases} 0 & \text{si } 0 \le x \le n - \frac{1}{n} \\ x - n + \frac{1}{n} & \text{si } n - \frac{1}{n} \le x \le n \\ -x + n + \frac{1}{n} & \text{si } n \le x \le n + \frac{1}{n} \\ 0 & \text{si } x \ge n + \frac{1}{n} \end{cases}$$

$$(iv) f_n(x) = \begin{cases} x & \text{si } x \in [0, 1/n] \\ 1/n & \text{si } x \in]1/n, 1 \end{cases}$$

$$(viii) \quad f_n(x) = \begin{cases} 0 & \text{si } 0 \le x \le n - \frac{1}{n} \\ n^2 x - n^3 + n & \text{si } n - \frac{1}{n} \le x \le n \\ -n^2 x + n^3 + n & \text{si } n \le x \le n + \frac{1}{n} \end{cases}$$