Université de Rennes 1-Année 2016/2017

L2-Probabilités de base-DM2

à rendre le 30 mars en TD

Exercice 1. Soit X une variable aléatoire continue de densité f, donnée par

 $f(x) = xe^{-\frac{x^2}{2}}\mathbf{1}_{[0,+\infty[}(x)$ pour tout $x \in \mathbf{R}$.

- (i) Vérifier que f est bien une densité de probabilité.
- (ii) Calculer les probabilités $P(1 \le X < \sqrt{2})$ et $P(|X| \ge 3)$.
- (iii) Soit $Y = X^2$. Déterminer la loi de Y et la reconnaître.
- (iv) Calculer $\mathbb{E}(X)$ et Var(X).

Exercice 2. Soient (X_n) et $(Y_n)_n$ des suites de v.a.r. sur l'espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ convergeant en probabilité vers deux v.a.r X et Y respectivement.

- (i) Soit $\epsilon > 0$. Montrer que l'évènement $\{|(X_n + Y_n) (X + Y)| \ge \epsilon\}$ entraı̂ne l'évènement $\{|X_n X| \ge \epsilon/2\} \cup \{|Y_n Y| \ge \epsilon/2\}$.
- (ii) Montrer que $(X_n + Y_n)_n$ converge en probabilité vers X + Y.
- (iii) On suppose qu'il existe une autre v.a.r X' telle que $(X_n)_n$ converge en probabilité vers X'. Déduire de (ii) que $\mathbf{P}(X=X')=1$.
- (iv) On suppose qu'il existe une constante C > 0 tel que, pour tout n, on ait $|X_n| \leq C$ et $|Y_n| \leq C$. Montrer que $(X_n Y_n)_n$ converge en probabilité vers XY.