INFINITE CHARACTERS ON $GL_n(\mathbf{Q})$, ON $SL_n(\mathbf{Z})$, AND ON GROUPS ACTING ON TREES

BACHIR BEKKA

ABSTRACT. Answering a question of J. Rosenberg from [Ros-89], we construct the first examples of infinite characters on $\operatorname{GL}_n(\mathbf{K})$ for a global field \mathbf{K} and $n \geq 2$. The case n = 2 is deduced from the following more general result. Let G a non amenable countable subgroup acting on locally finite tree X. Assume either that the stabilizer in G of every vertex of X is finite or that the closure of the image of G in $\operatorname{Aut}(X)$ is not amenable. We show that G has uncountably many infinite dimensional irreducible unitary representations (π, \mathcal{H}) of G which are traceable, that is, such that the C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ generated by $\pi(G)$ contains the algebra of the compact operators on \mathcal{H} . In the case $n \geq 3$, we prove the existence of infinitely many characters for $G = \operatorname{GL}_n(R)$, where $n \geq 3$ and R is an integral domain such that G is not amenable. In particular, the group $\operatorname{SL}_n(\mathbf{Z})$ has infinitely many such characters for $n \geq 2$.

1. INTRODUCTION

Let G be a countable discrete group and \widehat{G} the unitary dual of G, that is, the set of equivalence classes of irreducible unitary representations of G. The space \widehat{G} , equipped with a natural Borel structure, is a standard Borel space exactly when G is virtually abelian, by results of Glimm and Thoma (see [Gli–61] and [Tho–68]). So, unless G is virtually abelian (in which case the representation theory of G is well understood), a description of \widehat{G} is hopeless or useless. There are at least two other dual objects of G, which seem to be more accessible than \widehat{G} :

- Thoma's dual space E(G), that is, the set of indecomposable positive definite central functions on G;
- the space Char(G) of **characters** of G, that is, the space of lower semi-continuous semi-finite (not necessarily finite) traces t on the **maximal** C^* -algebra $C^*(G)$ of G (see Subsection 2.1)

The author acknowledges the support by the ANR (French Agence Nationale de la Recherche) through the projects Labex Lebesgue (ANR-11-LABX-0020-01) and GAMME (ANR-14-CE25-0004).

which satisfies the following extremality condition: every lower semi-continuous semi-finite trace on $C^*(G)$ dominated by t on the ideal of definition of t is proportional to t.

The space $\operatorname{Char}(G)$ parametrizes the quasi-equivalence classes of factorial representations of $C^*(G)$ which are **traceable**; recall that a unitary representation π is factorial if the von Neumann algebra \mathcal{M} generated by $\pi(G)$ is a factor and that a factorial representation π is traceable if there exists a faithful normal (not necessarily finite) trace τ on \mathcal{M} and a positive element $x \in C^*(G)$ such that $0 < \tau(\pi(x)) < +\infty$. If this is the case, then $t = \tau \circ \pi$ belongs to $\operatorname{Char}(G)$. Conversely, every element of $\operatorname{Char}(G)$ is obtained in this way. Traceable representations are also called *normal* representations.

Two traceable factorial representations π_1 and π_2 are quasi-equivalent if there exists an isomorphism $\Phi : \mathcal{M}_1 \to \mathcal{M}_2$ such that $\Phi(\pi_1(g)) = \pi_2(g)$ for all $g \in G$, where \mathcal{M}_i is the factor generated by $\pi_i(G)$.

Observe that an *irreducible* unitary representation (π, \mathcal{H}) of G is traceable if and only if $\pi(C^*(G))$ contains the algebra of compact operators on \mathcal{H} . The character associated to such a representation is given by the usual trace on $\mathcal{B}(\mathcal{H})$ and so does not belong to E(G) whenever \mathcal{H} is infinite dimensional; in this case, the character is said to be of type I_{∞} , in accordance with the type classification of von Neumann algebras. Observe also that two irreducible traceable representations of a group G are quasi-equivalent if and only if they are unitarily equivalent.

Thoma's dual space E(G) is a subspace of $\operatorname{Char}(G)$ and classifies the quasi-equivalence classes of the factorial representations π of $C^*(G)$ for which the factor \mathcal{M} generated by $\pi(G)$ is *finite*, that is, such that the trace τ on \mathcal{M} takes only finite values (for more detail on all of this, see Chapters 6 and 17 in [Dix-77]).

Thoma's dual space E(G) was determined for several examples of countable groups G, among them $G = GL_n(\mathbf{K})$ or $G = SL_n(\mathbf{K})$ for an infinite field \mathbf{K} and $n \geq 2$ ([Kiri–65]; see also [PeT–16]), and $G = SL_n(\mathbf{Z})$ for $n \geq 3$ ([Bek–07]); a procedure is given in [How–77, Proposition 3] to compute E(G) when G is a nilpotent finitely generated group.

The space Char(G) has been described for some *amenable* groups G:

- when G is nilpotent, we have E(G) = Char(G) (see [CaM-84, Theorem 2.1]);
- the space Char(G) is determined in [Guic-63] for the Baumslag-Solitar group BS(1, 2) and in [VeK-91] for the infinite symmetric group;

• for $G = GL_n(\mathbf{K})$ and $n \geq 2$, it is shown in [Ros-89] that $E(G) = \operatorname{Char}(G)$ in the case where \mathbf{K} an algebraic extension of a finite field. (Observe that $GL_n(\mathbf{K})$ is amenable if and only if \mathbf{K} an algebraic extension of a finite field; see Proposition 9 in [HoR-89] or Proposition 11 below.)

J. Rosenberg asked in [Ros-89, Remark after Théorème 1] whether there exists an *infinite* character on $G = \operatorname{GL}_n(\mathbf{K})$, that is, whether $\operatorname{Char}(G) \neq E(G)$, for a field \mathbf{K} which is not an algebraic extension of a finite field. We will show below that the answer to this question is positive, by exhibiting as far we know the first examples of such characters. The case where n = 2 and \mathbf{K} is a global field (see below) will be deduced from a general result concerning groups acting on trees, which we now state.

Recall that a graph X is locally finite if every vertex on X has only finitely many neighbours. In this case, the group $\operatorname{Aut}(X)$ of automorphisms of X, equipped with the topology of pointwise convergence, is a locally compact group for which the vertex stabilizers are compact. Concerning the notion of weakly equivalent representations, see Chapters 3 and 18 in [Dix-77] (see also Section 2.1).

Theorem 1. Let X be a tree and G a countable subgroup acting on X. Assume that

- (a) either G is not amenable and the stabilizer in G of every vertex of X is finite, or
- (b) X is locally finite and the closure of the image of G in Aut(X) is not amenable.

There exists an uncountable family $(\pi_t)_t$ of irreducible unitary representations of G with the following properties: π_t is infinite dimensional, is traceable and is not weakly equivalent to $\pi_{t'}$ for $t' \neq t$.

Recall that a global field is a finite extension of either the field \mathbf{Q} of rational numbers or of the field $\mathbf{F}_p(T)$ of rational functions in T over the finite field \mathbf{F}_p (see Chapter III in [Wei-67]).

Corollary 2. Let G be either

- (i) $\operatorname{GL}_2(\mathbf{K})$ or $\operatorname{SL}_2(\mathbf{K})$ for a global field \mathbf{K} , or
- (ii) $SL_2(\mathbf{Z})$, or
- (iii) F_n , the free non abelian group over $n \in \{2, \ldots, +\infty\}$ generators.

There exists an uncountable family $(\pi_t)_t$ of unitary representations of G with the properties from Theorem 1; moreover, in case $G = F_n$, the representations π_t are all faithful.

Turning to the case $n \geq 3$, we prove a result for $G = \operatorname{GL}_n(R)$ or $G = \operatorname{SL}_n(R)$, valid for every integral domain R such that G is not amenable.

Theorem 3. Let R be a countable unital commutative ring which is an integral domain; in case the characteristic of R is positive, assume that the field of fractions of R is not an algebraic extension of its prime field. For $n \ge 3$, let $G = \operatorname{GL}_n(R)$ or $G = \operatorname{SL}_n(R)$. There exists an infinite dimensional irreducible unitary representation of G which is traceable.

In the case where R is a field or the ring of integers, we can even produce infinitely many non equivalent representations as in Theorem 3.

- **Corollary 4.** (i) For $n \geq 3$, let $G = GL_n(\mathbf{K})$ for a countable field \mathbf{K} which is not an algebraic extension of a finite field. There exists an uncountable family $(\pi_t)_t$ of pairwise non equivalent infinite dimensional irreducible unitary representations of G which are traceable. Moreover, the representations π_t all have a trivial central character, that is, the π_t 's are representations of $\mathrm{PGL}_n(\mathbf{K})$.
 - (ii) Let $G = SL_n(\mathbf{Z})$ for $n \ge 3$. There exists an infinite family of pairwise non equivalent infinite dimensional irreducible unitary representations of G which are traceable.

The methods of proofs of Theorem 1 and Theorem 3 are quite different in nature:

- the proof of Theorem 1 is based on properties of a remarkable family of unitary representations of groups acting on trees constructed in [JuV-84] and used to show their *K*-theoretic amenability, a notion which originated from [Cun-83] in the case of free groups;
- the traceable representations we construct in Theorem 3 are induced representations from suitable subgroups. The case $n \ge$ 4 uses the existence of appropriate subgroups of $\operatorname{GL}_n(R)$ with Kazhdan's Property (T).

Remark 5. For a group G as in Theorem 1 or Theorem 1, our results show that the set Char(G) contains characters of type I_{∞} .

For, say, $G = \operatorname{GL}_n(\mathbf{Q})$, we do not know whether $\operatorname{Char}(G)$ contains characters of type II_{∞} , that is, characters for which the corresponding factorial representation generates a factor of type II_{∞} .

This paper is organized as follows. In Section 2, we establish some preliminary facts which are necessary to the proofs of our results. Section 3 is devoted to the proofs of Theorem 1 and Corollary 2; Theorem 3 and Corollary 4 are proved in Section 4.

2. Some preliminary results

2.1. C^* -algebras. Let G be a countable group. Recall that a unitary representation of G is a homomorphism $\pi : G \to U(\mathcal{H})$ from G to the unitary group of a complex separable Hilbert space \mathcal{H} . From now on, we will simply write **representation** of G instead of "unitary representation of G".

Every representation (π, \mathcal{H}) of G extends naturally to a *-representation, denoted again by π , of the group algebra $\mathbf{C}[G]$ by bounded operators on \mathcal{H} .

Recall that the maximal C^* -algebra $C^*(G)$ of G is the completion of $\mathbf{C}[G]$ of G with respect to the norm

$$f \mapsto \sup_{\pi \in \operatorname{Rep}(G)} \|\pi(f)\|,$$

where $\operatorname{Rep}(G)$ denotes the set of representations (π, \mathcal{H}) of G in a separable Hilbert space \mathcal{H} .

We can view G as subset of $\mathbb{C}[G]$ and hence as a subset of $C^*(G)$. The C^* -algebra $C^*(G)$ has the following universal property: every representation (π, \mathcal{H}) of G extends to a unique representation (that is, *-homomorphism) $\pi : C^*(G) \to \mathcal{B}(\mathcal{H})$. The correspondence $G \to C^*(G)$ is functorial: every homomorphism $\varphi : G_1 \to G_2$ between two countable groups G_1 and G_2 extends to a unique morphism

$$\varphi_*: C^*(G_1) \to C^*(G_2)$$

of C^* -algebras. In particular, given a subgroup H of a group G, the injection map $i: H \to G$ extends to a morphism $i_*: C^*(H) \to C^*(G)$; the map i_* is injective and so $C^*(H)$ can be viewed naturally as a subalgebra of $C^*(G)$: indeed, this follows from the fact that every representation σ of H occurs as subrepresentation of the restriction to H of some representation π of G (one may take as π the induced representation $\operatorname{Ind}_H^G \sigma$, as shown below in Proposition 9).

The following simple lemma will be one of our tools in order to show that $\pi(C^*(G))$ contains a non-zero compact operator for a representation π of G.

Let \mathcal{A} be a C^* -algebra. Recall that a representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ weakly contains another representation $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{K})$ if

$$\|\rho(a)\| \le \|\pi(a)\| \quad \text{for all} \quad a \in \mathcal{A},$$

or, equivalently, ker $\pi \subset \ker \rho$ (see Chapter 3 in [Dix-77]). Two representations π and ρ are weakly equivalent if π weakly contains ρ and ρ weakly contains π , that is, if ker $\pi = \ker \rho$.

Lemma 6. Let \mathcal{A} be a C^* -algebra and $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ a representation of \mathcal{A} . Assume that \mathcal{H} contains a non-zero finite dimensional $\pi(\mathcal{A})$ invariant subspace \mathcal{K} and that the restriction π_1 of π to \mathcal{K} is not weakly contained in the restriction π_0 of π to the orthogonal complement \mathcal{K}^{\perp} . Then $\pi(\mathcal{A})$ contains a non-zero compact operator.

Proof. The ideal ker π_0 is not contained in ker π_1 , since π_1 is not weakly contained in π_0 . Hence, there exists $a \in \mathcal{A}$ with $\pi_0(a) = 0$ and $\pi_1(a) \neq 0$. Then $\pi(a) = \pi_1(a)$ has a finite dimensional range and is non-zero. \Box

Knowing that a representation of \mathcal{A} contains in its image a nonzero compact operator, the following lemma enables us to construct an *irreducible* representation of \mathcal{A} with the same property.

Lemma 7. Let \mathcal{A} be a C^* -algebra and $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ a representation of \mathcal{A} in a separable Hilbert space \mathcal{H} Let $a \in \mathcal{A}$ be such that $\pi(a)$ is a non-zero compact operator. Then there exists an irreducible subrepresentation σ of π such that $\sigma(a)$ is a compact operator and such that $\|\sigma(a)\| = \|\pi(a)\|.$

Proof. We can decompose π as a direct integral $\int_{\Omega}^{\oplus} \pi_{\omega} d\mu(\omega)$ of irreducible representations π_{ω} ; thus, we can find a probabilility measure μ on a standard Borel space Ω , a measurable field $\omega \to \pi_{\omega}$ of irreducible representations of \mathcal{A} in a measurable field $\omega \to \mathcal{H}_{\omega}$ of separable Hilbert spaces on Ω , and a Hilbert space isomorphism $U : \mathcal{H} \to \int_{\Omega}^{\oplus} \mathcal{H}_{\omega} d\mu(\omega)$ such that

$$U\pi(x)U^{-1} = \int_{\Omega}^{\oplus} \pi_{\omega}(x)d\mu(\omega).$$
 for all $x \in \mathcal{A}$

(see [Dix-77, §8.5]). Without loss of generality, we will identify π with $\int_{\Omega}^{\oplus} \pi_{\omega} d\mu(\omega)$.

Let $a \in \mathcal{A}$ be such that $\pi(a)$ is a non-zero compact operator. Since $\|\sigma(a^*a)\| = \|\sigma(a)\|^2$ for every representation σ of \mathcal{A} , upon replacing a by a^*a , we can assume that a is a positive element of \mathcal{A} . So $\pi(a)$ is a positive selfadjoint compact operator on \mathcal{H} with $\pi(a) \neq 0$.

INFINITE CHARACTERS

There exists an orthonormal basis $(F_n)_{n\geq 1}$ of $\mathcal{H} = \int_{\Omega}^{\oplus} \mathcal{H}_{\omega} d\mu(\omega)$ consisting of eigenvectors of $\pi(a)$, with corresponding eigenvalues $(\lambda_n)_{n\geq 1}$, counted with multiplicities. For every $\omega \in \Omega$ and every $n \geq 1$, we have

(*)
$$\pi_{\omega}(a)(F_n(\omega)) = \lambda_n F_n(\omega).$$

Let $n_0 \ge 1$ be such that $\lambda_{n_0} = \max\{\lambda_n \mid n \ge 1\}$. Then $\|\pi(a)\| = \lambda_{n_0}$. Set

$$\Omega_0 = \{ \omega \in \Omega \mid F_{n_0}(\omega) \neq 0. \}.$$

Since $F_{n_0} \neq 0$, we have $\mu(\Omega_0) > 0$. We claim that Ω_0 is a finite subset of Ω consisting of atoms of μ . Indeed, assume by contradiction that is not the case. Then there exists an infinite sequence $(A_k)_k$ of pairwise disjoint Borel subsets of Ω_0 with $\mu(A_k) > 0$. Observe that $\mathbf{1}_{A_k} F_{n_0}$ is a non-zero vector in \mathcal{H} and that $\langle \mathbf{1}_{A_k} F_{n_0}, | \mathbf{1}_{A_l} F_{n_0} \rangle = 0$ for every $k \neq l$. Moreover, we have

$$\pi(a)(\mathbf{1}_{A_k}F_{n_0}) = \int_{A_k}^{\oplus} \pi_{\omega}(a)(F_{n_0}(\omega))d\mu(\omega)$$
$$= \lambda_{n_0} \int_{A_k}^{\oplus} F_{n_0}(\omega)d\mu(\omega)$$
$$= \lambda_{n_0}\mathbf{1}_{A_k}F_{n_0}.$$

Since $\pi(a)$ is a compact operator and $\lambda_{n_0} \neq 0$, this is a contradiction.

Let $\omega_0 \in \Omega_0$ be such that $\mu(\{\omega_0\}) > 0$. We claim that the linear span of $\{F_n(\omega_0) \mid n \ge 1\}$ is dense in \mathcal{H}_{ω_0} . Indeed, let $v \in \mathcal{H}_{\omega_0}$ be such that

$$\langle v \mid F_n(\omega_0) \rangle = 0$$
 for all $n \ge 1$.

Let $F = \mathbf{1}_{\omega_0} \otimes v \in \mathcal{H}$ be defined by $F(\omega_0) = v$ and $F(\omega) = 0$ for $\omega \neq \omega_0$. Then $\langle F | F_n \rangle = 0$ for all $n \ge 1$. Hence, F = 0, that is, v = 0, since $(F_n)_{n \ge 1}$ is a basis of \mathcal{H} .

By (*), $F_n(\omega_0)$ is an eigenvector of $\pi_{\omega_0}(a)$ with eigenvalue λ_n for every $n \geq 1$ such that $F_n(\omega_0) \neq 0$. Since $\{F_n(\omega_0) \mid n \geq 1\}$ is a total subset of \mathcal{H}_{ω_0} , it follows that there exists a basis of \mathcal{H}_{ω_0} consisting of eigenvectors of $\pi_{\omega_0}(a)$. As

$$\lim_{n \to \infty} \lambda_n = 0$$

(in case the sequence $(\lambda_n)_{n\geq 1}$ is infinite), it follows that $\pi_{\omega_0}(a)$ is a compact operator on \mathcal{H}_{ω_0} . Moreover, we have

$$\|\pi_{\omega_0}(a)\| = \max\{\lambda_n \mid n \ge 1\} = \lambda_{n_0} = \|\pi(a)\|.$$

Finally, an equivalence between π_{ω_0} and a subrepresentation of π is provided by the unitary linear map

$$\mathcal{H}_{\omega_0} \to \mathcal{H}, v \mapsto \mathbf{1}_{\omega_0} \otimes v.$$

2.2. Induced representations of groups. In the sequel, we will often consider group representations which are induced representations. Let G be a countable group, H a subgroup of G and (σ, \mathcal{K}) a representation of H. Recall that the induced representation $\operatorname{Ind}_{H}^{G} \sigma$ of G may be realized as follows. Let \mathcal{H} be the Hilbert space of maps $f: G \to \mathcal{K}$ with the following properties

- (i) $f(hx) = \sigma(h)f(x)$ for all $x \in G, h \in H$; (ii) $\sum_{x \in H \setminus G} \|f(x)\|^2 < \infty$. (Observe that $\|f(x)\|$ only depends on the coset of x in $H \setminus G$.)

The induced representation $\pi = \operatorname{Ind}_H^G \sigma$ is given on \mathcal{H} by right translation:

$$(\pi(g)f)(x) = f(xg)$$
 for all $g \in G$, $f \in \mathcal{H}$ and $x \in G$.

Recall that the **commensurator** of H in G is the subgroup, denoted by $\operatorname{Comm}_G(H)$, of the elements $g \in G$ such that $gHg^{-1} \cap H$ is of finite index in both H and $q^{-1}Hq$.

The following result appeared in [Mac-51] in the case where σ is of dimension 1 and was extended to its present form in [Kle–61] and [Cor-75].

Theorem 8. Let G be a countable group and H a subgroup of G such that $\operatorname{Comm}_G(H) = H$.

- (i) For every finite dimensional irreducible representation σ of H, the induced representation $\operatorname{Ind}_{H}^{G} \sigma$ is irreducible.
- (ii) Let σ_1 and σ_2 be non equivalent finite dimensional irreducible representations of H. The representations $\operatorname{Ind}_{H}^{G} \sigma_{1}$ and $\operatorname{Ind}_{H}^{G} \sigma_{2}$ are non equivalent.

We will need to decompose the restriction to a subgroup of an induced representation $\operatorname{Ind}_{H}^{\hat{G}} \sigma$ as in Theorem 8. For $g \in G$, we denote by σ^{g} the representation of $g^{-1}Hg$ defined by $\sigma^{g}(x) = \sigma(gxg^{-1})$ for $x \in g^{-1}Hg.$

For the convenience of the reader, we give a short and elementary proof of the following special case of the far more general result [Mac-52, Theorem 12.1].

Proposition 9. Let G be a countable group, H, L subgroups of G and (σ, \mathcal{K}) a representation of H. Let S be a system of representatives for the double coset space $H \setminus G/L$. The restriction $\pi|_L$ to L of the induced representation $\pi = \operatorname{Ind}_H^G \sigma$ is equivalent to the direct sum

$$\bigoplus_{s\in S} \operatorname{Ind}_{s^{-1}Hs\cap L}^{L}(\sigma^{s}|_{s^{-1}Hs\cap L})$$

Proof. Let \mathcal{H} be the Hilbert space of π , as described above. For every $s \in S$, let \mathcal{H}_s be the space of maps $f \in \mathcal{H}$ such that f = 0 outside the double coset HsL. We have an orthogonal L-invariant decomposition

$$\mathcal{H} = \bigoplus_{s \in S} \mathcal{H}_s$$

Fix $s \in S$. The Hilbert space \mathcal{H}'_s of $\operatorname{Ind}_{s^{-1}Hs\cap L}^L(\sigma^s|_{s^{-1}Hs\cap L})$ consists of the maps $f: L \to \mathcal{K}$ such that

- $f(tx) = \sigma(sts^{-1})f(x)$ for all $t \in s^{-1}Hs \cap L, x \in L$; $\sum_{x \in s^{-1}Hs \cap L \setminus L} ||f(x)||^2 < \infty$.

Define a linear map $U: \mathcal{H}_s \to \mathcal{H}'_s$ by

$$Uf(x) = f(sx)$$
 for all $f \in \mathcal{H}_s, x \in L$.

Observe that, for $t \in s^{-1}Hs \cap L$, $x \in L$ and $f \in \mathcal{H}_s$, we have

$$Uf(tx) = f(stx) = f((sts^{-1})sx) = \sigma(sts^{-1})f(sx) = \sigma^{s}(t)Uf(x)$$

and that

$$\sum_{x \in s^{-1}Hs \cap L \setminus L} \|Uf(x)\|^2 = \sum_{x \in s^{-1}Hs \cap L \setminus L} \|f(sx)\|^2 = \sum_{y \in H \setminus G} \|f(y)\|^2 < \infty,$$

so that $Uf \in \mathcal{H}'_s$ and U is an isometry. It is easy to check that the map U is invertible, with inverse given by

$$U^{-1}f(y) = \begin{cases} \sigma(h)f(x) & \text{if } y = hsx \in HsL\\ 0 & \text{otherwise }, \end{cases}$$

for $f \in \mathcal{H}'_s$. Moreover, U intertwines the restriction of $\pi|_L$ to \mathcal{H}_s and $\operatorname{Ind}_{s^{-1}Hs\cap L}^L(\sigma^s|_{s^{-1}Hs\cap L})$: for $g, x \in L$ and $f \in \mathcal{H}'_s$, we have

$$\left(U\pi(g)U^{-1}f \right)(x) = \left(\pi(g)U^{-1}f \right)(sx)$$

$$= \left(U^{-1}f(sxg) \right)$$

$$= f(xg)$$

$$= \left(\operatorname{Ind}_{s^{-1}Hs\cap L}^{L}(\sigma^{s}|_{s^{-1}Hs\cap L})(g)f \right)(x)$$

We will need the following elementary lemma about induced representations containing a finite dimensional representation. Recall that a representation π of a group G contains another representation σ of G if σ is equivalent to a subrepresentation of π . Recall also that, if π is

finite dimensional representation of a group G, then $\pi \otimes \bar{\pi}$ contains the trivial representation 1_G , where $\bar{\pi}$ is the conjugate representation of π and $\pi \otimes \rho$ denotes the (inner) tensor product of the representations π and ρ (see [BHV–08, Proposition A. 1.12]).

Proposition 10. Let G be a countable group, H a subgroup of G, and σ a representation of H. Assume that the induced representation $\operatorname{Ind}_{H}^{G} \sigma$ contains a finite dimensional representation of G. Then H has finite index in G.

Proof. By assumption, $\pi := \operatorname{Ind}_{H}^{G} \sigma$ contains a finite dimensional representation σ . Hence, $\pi \otimes \overline{\pi}$ contains 1_{G} . On the other hand,

$$\pi \otimes \bar{\pi} = (\operatorname{Ind}_H^G \sigma) \otimes \bar{\pi}$$

is equivalent to $\operatorname{Ind}_{H}^{G}(\rho)$, where $\rho = \sigma \otimes (\overline{\pi}|_{H})$; see [BHV-08, Proposition E. 2.5]. So, there exists a non-zero map $f: G \to \mathcal{K}$ in the Hilbert space of $\operatorname{Ind}_{H}^{G}(\rho)$ which is *G*-invariant, that is, such that f(xg) = f(x) for all $g, x \in G$. This implies that the L^2 -function $x \mapsto ||f(x)||^2$ is constant on $H \setminus G$. This is only possible if $H \setminus G$ is finite.

2.3. Amenability. Let **G** be a topological group and $UCB(\mathbf{G})$ the Banach space of the left uniformly continuous bounded functions on **G**, equipped with the uniform norm. Recall that **G** is amenable if there exists a **G**-invariant mean on $UCB(\mathbf{G})$ (see Appendix G in [BHV–08]).

The following proposition characterizes the integral domains R for which $\operatorname{GL}_n(R)$ or $\operatorname{SL}_n(R)$ is amenable; the proof is an easy extension of the proof given in Proposition 9 in [HoR-89] for the case where R is a field.

Proposition 11. Let R be a countable unital commutative ring which is an integral domain. Let \mathbf{K} be the field of fractions of R and G = $\operatorname{GL}_n(R)$ or $G = \operatorname{SL}_n(R)$ for an integer $n \ge 2$. The following properties are equivalent:

- (i) G is not amenable.
- (ii) **K** is not an algebraic extension of a finite field.
- (iii) R contains **Z** if the characteristic of **K** is 0 or the polynomial ring $\mathbf{F}_p[T]$ if the characteristic of **K** is p > 0.

Proof. Assume that **K** is an algebraic extension of a finite field \mathbf{F}_q . Then $\mathbf{K} = \bigcup_m \mathbf{K}_m$ for an increasing family of finite extensions \mathbf{K}_m of \mathbf{F}_q ; hence, $\operatorname{GL}_n(\mathbf{K}) = \bigcup_m \operatorname{GL}_n(\mathbf{K}_m)$ is the inductive limit of the finite and hence amenable groups $\operatorname{GL}_n(\mathbf{K}_m)$; it follows that $\operatorname{GL}_n(\mathbf{K})$ is amenable and therefore $\operatorname{GL}_n(R)$ and $\operatorname{SL}_n(R)$ are amenable. This shows that (i) implies (ii).

INFINITE CHARACTERS

Assume that (ii) holds. If the characteristic of **K** is 0, then **K** contains **Q** and hence *R* contains **Z**. So, we can assume that the characteristic of **K** is p > 0. We claim that *R* contains an element which is not algebraic over the prime field \mathbf{F}_p . Indeed, otherwise, every element in *R* is algebraic over \mathbf{F}_p . As the set of elements in **K** which are algebraic over \mathbf{F}_p is a field, it would follow that the field fraction field **K** is algebraic over \mathbf{F}_p . This contradiction shows that (ii) implies (iii).

Assume that (iii) holds. Then $SL_n(R)$ contains a copy of $SL_2(\mathbf{Z})$ or a copy of $SL_2(\mathbf{F}_p[T])$. It is well-known that both $SL_2(\mathbf{Z})$ and $SL_2(\mathbf{F}_p[T])$ contain a subgroup which is isomorphic to the free group on two generators. Therefore, G is not amenable and so (iii) implies (i).

Let **G** be a *locally compact* group, with Haar measure m. Recall that the amenability of **G** is characterized by the Hulanicki-Reiter theorem (see [BHV–08, Theorem G.3.2]): **G** is amenable if and only if the regular representation $(\lambda_{\mathbf{G}}, L^2(\mathbf{G}, m))$ weakly contains the trivial representation $\mathbf{1}_{\mathbf{G}}$, where m is Haar measure on **G**; when this is the case, $\lambda_{\mathbf{G}}$ weakly contains every representation of **G**

The following result shows the amenability of **G** can be detected by the restriction of $\lambda_{\mathbf{G}}$ to a dense subgroup; for a more general result, see [Guiv-80, Proposition 1] or [Bek-16, Theorem 5.5].

Proposition 12. Let **G** be a locally compact group and *G* a countable dense subgroup of **G**. Assume that the restriction to *G* of the regular representation $\lambda_{\mathbf{G}}$ of **G** weakly contains the trivial representation 1_G . Then **G** is amenable.

Proof. By assumption, there exists a sequence $(f_n)_n$ in $L^2(\mathbf{G}, m)$ with $||f_n|| = 1$ such that

$$\lim_{n \to \infty} \|\lambda_{\mathbf{G}}(g)f_n - f_n\| = 0 \quad \text{for all} \quad g \in G.$$

Then, since $||f_n(g^{-1}x)| - |f_n(x)|| \le |f_n(g^{-1}x) - f_n(x)|$ for $g, x \in \mathbf{G}$, we have

(*)
$$\lim_{n} \|\lambda_{\mathbf{G}}(g)|f_{n}| - |f_{n}|\| = 0 \quad \text{for all} \quad g \in G.$$

Set $\varphi_n := \sqrt{|f_n|}$. Then $\varphi_n \ge 0$ and $\int_{\mathbf{G}} \varphi_n dm = 1$. Every φ_n defines a mean $M_n : f \mapsto \int_{\mathbf{G}} f \varphi_n dm$ on $UCB(\mathbf{G})$. Let M be a limit of $(M_n)_n$ for the weak-*-topology on the dual space of $UBC(\mathbf{G})$. It follows from (*) that M is invariant under G. Since, for every $f \in UCB(\mathbf{G})$, the map

$$\mathbf{G} \to UCB(\mathbf{G}), \quad g \mapsto_q f$$

is continuous (where $_g f$ denotes left translation by $g \in \mathbf{G}$), it follows that M is invariant under \mathbf{G} . Hence, \mathbf{G} is amenable.

2.4. Special linear groups over a subring of a field. We will use the following elementary lemma about subgroups of $SL_n(\mathbf{K})$ which stabilize a line in \mathbf{K}^n .

Lemma 13. For an infinite field \mathbf{K} and $n \geq 2$, let L be a subgroup of $\mathrm{SL}_n(\mathbf{K})$ which stabilizes a line ℓ in \mathbf{K}^n . Then $L \cap \mathrm{SL}_n(R)$ has infinite index in $\mathrm{SL}_n(R)$ for every infinite unital subring R of \mathbf{K} .

Proof. Let $\{v_1, \ldots, v_n\}$ be a basis of \mathbf{K}^n with $\ell = \mathbf{K}v_1$. Fix $i, j \in \{1, \ldots, n\}$ with $i \neq j$ and, for $\lambda \in \mathbf{K}$, let $E_{ij}(\lambda)$ be the corresponding elementary matrix in $SL_n(\mathbf{K})$, that is,

$$E_{ij}(\lambda) = I_n + \lambda \Delta_{ij},$$

where Δ_{ij} denotes the matrix with 1 at the position (i, j) and 0 otherwise.

For every l = 1, ..., n, let $\varphi_l : \mathbf{K} \to \mathbf{K}$ be defined by

$$E_{ij}(\lambda)(v_1) = \sum_{i=1}^n \varphi_l(\lambda)v_i \text{ for } \lambda \in \mathbf{K}.$$

Every φ_l is a polynomial function (in fact, an affine function) on **K** and, for l = 2, ..., n, we have $\varphi_l(\lambda) = 0$ for every $\lambda \in \mathbf{K}$ such that $E_{ij}(\lambda) \in L$.

Assume, by contradiction, that $L \cap SL_n(R)$ has finite index in $SL_n(R)$ for an infinite subring R of **K**. Then the subgroup

$$L_{i,j}(R) := L \cap \{E_{ij}(\lambda) \mid \lambda \in R\}$$

has finite index in the subgroup $\{E_{ij}(\lambda) \mid \lambda \in R\}$ of $SL_n(R)$. In particular, $L_{i,j}(R)$ is infinite. It follows that φ_l has infinitely many roots in **K** and hence that $\varphi_l = 0$, for every $l = 2, \ldots, n$. Therefore, every elementary matrix $E_{ij}(\lambda)$ fixes the line ℓ , for $i, j \in \{1, \ldots, n\}$ and $\lambda \in \mathbf{K}$. Since $SL_n(\mathbf{K})$ is generated by elementary matrices, it follows that every matrix in $SL_n(\mathbf{K})$ fixes the line ℓ ; this of course is impossible.

3. Proofs of Theorem 1 and Corollary 2

3.1. **Proof of Theorem 1.** Let X be a tree, with X^0 the set of vertices and X^1 the set of edges of X. Let **G** be a locally compact group acting on X.

Julg and Valette constructed in [JuV-84] (see also [Szw-91] and [Jul-15]) a remarkable family of representations $(\pi_t)_{t \in [0,1]}$ of **G**, all defined on $\ell^2(X^0)$, with the following properties:

INFINITE CHARACTERS

- (i) π_0 is the natural representation of **G** on $\ell^2(X^0)$ and π_1 is equivalent to $1_{\mathbf{G}} \oplus \rho_1$, where ρ_1 is the natural representation of **G** on $\ell^2(X^1)$;
- (ii) for every $t \in [0, 1]$, there exists a bounded operator T_t on $\ell^2(X^0)$ with inverse T_t^{-1} defined on the subspace of functions of X^0 with finite support such that $\pi_t(g) := T_t^{-1}\pi_0(g)T_t$ extends to a unitary operator on $\ell^2(X^0)$ for every $g \in \mathbf{G}$; so, a unitary representation $g \mapsto \pi_t(g)$ of \mathbf{G} is defined on $\ell^2(X^0)$;
- (iii) $\pi_t(g) \pi_0(g)$ is a finite-rank operator on $\ell^2(X^0)$, for every $t \in [0, 1]$ and $g \in \mathbf{G}$;
- (iv) we have

$$\langle \pi_t(g) T_t^{-1} \delta_x \mid T_t^{-1} \delta_y \rangle = t^{d(gx,y)}$$

for every $t \in (0, 1)$, $g \in \mathbf{G}$ and $x, y \in X^0$, where d denotes the natural distance on X^0 ;

(v) the map

$$[0,1] \to \mathbf{R}^+, \ t \mapsto \|\pi_t(g) - \pi_0(g)\|$$

is continuous for every $g \in \mathbf{G}$.

(Our representation π_t is $g \mapsto U_{\lambda}\rho_{\lambda}(g)U_t^{-1}$ with $\lambda = -\log t$, for the representation ρ_{λ} and the operator U_{λ} appearing in §2 of [JuV-84].) Let G be a countable group acting on X. Assume that

- (a) either G is not amenable and the stabilizer in G of every vertex of X is finite or
- (b) X is locally finite and the closure of the image of G in Aut(X) is not amenable.

Set $\mathbf{G} = G$ in case (a) and let \mathbf{G} be the closure of G in Aut(X) in case (b). Let $(\pi_t)_{t \in [0,1]}$ be the family of representations of \mathbf{G} as above.

• First step. For every $a \in C^*(G)$ and every $t \in [0, 1]$, the operator $\pi_t(a) - \pi_0(a)$ is compact and the map

$$[0,1] \rightarrow \mathbf{R}^+, \ t \mapsto \|\pi_t(a) - \pi_0(a)\|$$

is continuous.

Indeed, this follows from Properties (iii) and (v) of the family $(\pi_t)_t$ and from the fact that $\mathbf{C}[G]$ is dense in $C^*(G)$.

• Second step. The restriction $\pi_0|_G$ of π_0 to G does not weakly contain the trivial representation 1_G .

Indeed, the representation π_0 of **G** is equivalent to the direct sum $\bigoplus_{s \in T} \lambda_{\mathbf{G}/\mathbf{G}_s}$, where *S* is a system of representatives for the **G**-orbits in X^0 and \mathbf{G}_s is the stabilizer in **G** of $s \in S$. Since \mathbf{G}_s is compact (and even finite in case (a)) and hence amenable, $\lambda_{\mathbf{G}/\mathbf{G}_s} = \operatorname{Ind}_{\mathbf{G}_s}^{\mathbf{G}} \mathbf{1}_{\mathbf{G}_s}$

is weakly contained in the regular representation $\lambda_{\mathbf{G}}$ of \mathbf{G} and so π_0 is weakly contained in $\lambda_{\mathbf{G}}$. Hence, π_0 does not weakly contain the trivial representation $\mathbf{1}_G$ in case (a). In case (b), the claim follows from Proposition 12, since \mathbf{G} is not amenable and G is dense in \mathbf{G} .

• Third step. There exists an element $a \in C^*(G)$ and $0 \leq t_0 < 1$ with the following properties: $\pi_{t_0}(a) = 0$, $\pi_t(a)$ is a non zero compact operator for every $t \in (t_0, 1]$, and the map

$$[t_0, 1] \rightarrow \mathbf{R}+, t \mapsto \|\pi_t(a)\|$$

is continuous.

Indeed, by the second step, there exists $a \in C^*(G)$ such that $\pi_0(a) = 0$ and $1_G(a) \neq 0$. Therefore, $\pi_1(a) \neq 0$ and $\pi_t(a) = \pi_t(a) - \pi_0(a)$ for every $t \in [0, 1]$ and so the claim follows from the first step.

• Fourth step. Let $a \in C^*(G)$ and $0 \le t_0 < 1$ be as in the third step. There exists an irreducible infinite dimensional subrepresentation σ_t of π_t such that $\sigma_t(a)$ is a compact operator and such that $\|\sigma_t(a)\| = \|\pi_t(a)\|$ for every $t \in (t_0, 1)$.

Indeed, it follows from the third step and Lemma 7 that $\pi_t|_G$ contains an irreducible subrepresentation σ_t such that $\sigma_t(a)$ is a compact operator with $\|\sigma_t(a)\| = \|\pi_t(a)\|$. It remains to show that σ_t is infinite dimensional for every $t \in (t_0, 1)$.

Assume, by contradiction, σ_t is finite dimensional for some $t \in (t_0, 1)$. Since G is dense in **G**, the closed subspace \mathcal{K}_t of $\ell^2(X^0)$ defining σ_t is invariant under **G** and so σ_t is the restriction to G of a dimensional subrepresentation of π_t , again denoted by σ_t . On the one hand, **G** acts properly on X^0 , since the stabilizers of vertices are compact (and even finite in case (a)). So, we have

$$\lim_{g \to +\infty: g \in \mathbf{G}} d(gx, x) = 0 \quad \text{for all} \quad x \in X^0.$$

It follows from Property (iv) of the family $(\pi_t)_t$ that π_t (and hence σ_t) is a C_0 -representation, that is,

$$\lim_{g \to +\infty: g \in \mathbf{G}} \langle \pi_t(g) v \mid w \rangle = 0$$

for every $v, w \in \ell^2(X^0)$. On the other hand, since σ_t is finite dimensional, $\sigma_t \otimes \overline{\sigma_t}$ contains $\mathbf{1}_{\mathbf{G}}$. As **G** is not compact, this is a contradiction to the fact that σ_t is a C_0 -representation.

• Fifth step. There exists uncountably many real numbers $t \in (t_0, 1)$ such that the subrepresentations σ_t of $\pi_t|_G$ as in the fourth step are pairwise non weakly equivalent.

Indeed, by the third step, the function $f: t \mapsto ||\pi_t(a)||$ is continuous on $[t_0, 1]$, with $f(t_0) = 0$ and f(1) > 0. So, the range of f contains a whole interval. Let $t, s \in (t_0, 1)$ be such that $f(t) \neq f(s)$. Then

$$\|\sigma_t(a)\| = \|\pi_t(a)\| = f(t) \neq f(s) = \|\pi_s(a)\| = \|\sigma_s(a)\|,$$

and so σ_t and σ_s are not weakly equivalent.

3.2. **Proof of Corollary 2.** The following remarks show how Corollary 2 follows from Theorem 1.

(i) Let **K** be global field **K**. Choose a non trivial discrete valuation $v : \mathbf{K}^* \to \mathbf{Z}$. The completion of **K** at v is a non archimedean local field \mathbf{K}_v . The tree X_v associated to v (see Chapter II in [Ser-80]) is a locally finite regular graph. The group $G = \operatorname{GL}_2(\mathbf{K})$ acts as a group of automorphisms of X_v , with vertex stabilizers conjugate to $\operatorname{GL}_2(\mathcal{O}_v \cap \mathbf{K})$, where \mathcal{O}_v is the compact subring of the integers in \mathbf{K}_v . The closure of the image of G in $\operatorname{Aut}(X_v)$ coincides with $\operatorname{PGL}_2(\mathbf{K}_v)$ and is therefore non amenable. A similar remark applies to $G = \operatorname{SL}_2(\mathbf{K})$.

(ii) As is well-known, the group $G = SL_2(\mathbf{Z})$ is an amalgamated product $\mathbf{Z}/4\mathbf{Z}*_{\mathbf{Z}/2\mathbf{Z}}\mathbf{Z}/6\mathbf{Z}$. It follows that G acts on a tree with vertices of valence 2 or 3 with vertex stabilizers of order 4 or 6 (see Chapter I, Examples 4.2. in [Ser-80])

(iii) The free non abelian group F_2 acts freely on its Cayley graph X, which is a 4-regular tree. It follows that F_n acts freely on X for every $n \in \{2, \ldots, +\infty\}$. Observe that, in this case, the representations π_t and σ_t as in the proof of Theorem 1 are faithful for $t \neq 1$ (since there are even C_0 -representations).

4. Proofs of Theorem 3 and Corollary 4

4.1. **Proof of Theorem 3.** Let R be a countable unital commutative ring which is an integral domain and \mathbf{K} its field of fractions. In case the characteristic of \mathbf{K} is positive, assume that \mathbf{K} is not an algebraic extension of its prime field.

Let $n \geq 3$ and $G = \operatorname{GL}_n(R)$. We consider the natural action of G on the projective space $\mathbf{P}(\mathbf{K}^n)$. Let $\ell_0 = \mathbf{K}e_1 \in \mathbf{P}(\mathbf{K}^n)$ be the line defined by the first unit vector e_1 in \mathbf{K}^n . The stabilizer of ℓ_0 in G is

$$H = \begin{pmatrix} R^{\times} & R^{n-1} \\ 0 & GL_{n-1}(R) \end{pmatrix}.$$

Let σ be a finite dimensional representation of H and $\pi := \operatorname{Ind}_{H}^{G} \sigma$. We claim that π is irreducible and that $\pi(C^{*}(G))$ contains a non zero compact operator. For the proof of this claim, we have to treat separately the cases n = 3 and $n \geq 4$.

4.1.1. **Case** n = 3. • First step. We claim that $gHg^{-1} \cap H$ is amenable, for every $g \in G \setminus H$.

Indeed, let $g \in G \setminus H$. Then ℓ_0 and $g\ell_0$ are distinct lines in \mathbf{K}^n and are both stabilized by $gHg^{-1} \cap H$. Hence, $gHg^{-1} \cap H$ is isomorphic to a subgroup of the solvable group

$$\begin{pmatrix} \mathbf{K}^* & 0 & \mathbf{K} \\ 0 & \mathbf{K}^* & \mathbf{K} \\ 0 & 0 & \mathbf{K}^* \end{pmatrix}$$

and is therefore amenable.

• Second step. We claim that the representation π is irreducible.

Indeed, in view of Theorem 8, we have to show that $\operatorname{Comm}_G(H) = H$. Let $g \in G \setminus H$. On the one hand, $gHg^{-1} \cap H$ is amenable, by the first step. On the other hand, H is non amenable, by Proposition 11. This implies that $gHg^{-1} \cap H$ is not of finite index in H and so g is not in the commensurator of H in G.

• Third step. We claim that the C^* -algebra $\pi(C^*(G))$ contains a non-zero compact operator.

Indeed, let S be a system of representatives for the double cosets space $H \setminus G/H$ with $e \in S$. By Proposition 9, the restriction $\pi|_H$ of π to H is equivalent to the direct sum

$$\bigoplus_{s\in S} \operatorname{Ind}_{s^{-1}Hs\cap H}^{H}(\sigma^{s}|_{s^{-1}Hs\cap H}) = \sigma \oplus \bigoplus_{s\in S\setminus\{e\}} \operatorname{Ind}_{s^{-1}Hs\cap H}^{H}(\sigma^{s}|_{s^{-1}Hs\cap H})$$

Let $s \in S \setminus \{e\}$. By the first step, $s^{-1}Hs \cap H$ is amenable and hence $\sigma^s|_{s^{-1}Hs\cap H}$ is weakly contained in the regular representation $\lambda_{s^{-1}Hs\cap H}$ of $s^{-1}Hs \cap H$, by the Hulanicki-Reiter theorem. By continuity of induction (see [BHV–08, Theorem F.3.5]), it follows that $\operatorname{Ind}_{s^{-1}Hs\cap H}^{H}(\sigma^s|_{s^{-1}Hs\cap H})$ is weakly contained in the regular representation λ_H of H. Therefore,

$$\pi_0 := \bigoplus_{s \in S \setminus \{e\}} \operatorname{Ind}_{s^{-1}Hs \cap H}^H(\sigma^s|_{s^{-1}Hs \cap H})$$

is weakly contained in λ_H . It follows that π_0 does not weakly contain σ ; indeed, assume by contradiction that σ is weakly contained in π_0 . Then $\lambda_H \otimes \overline{\lambda_H}$, which is a multiple of λ_H , weakly contains $\sigma \otimes \overline{\sigma}$. However, since σ is finite dimensional, $\sigma \otimes \overline{\sigma}$ contains 1_H . Hence, 1_H is weakly

contained in λ_H and this is a contradiction to the non amenability of H.

It follows from Lemma 6 that $\pi(C^*(H))$ contains a non-zero compact operator. Since $C^*(H)$ can be viewed a subalgebra of $C^*(G)$, the claim is proved for $G = \operatorname{GL}_3(R)$.

4.1.2. Case $n \ge 4$. For every unital subring R' of R, set

$$L(R') := \begin{pmatrix} 1 & 0\\ 0 & \operatorname{SL}_{n-1}(R') \end{pmatrix},$$

which is a subgroup of H isomorphic to $SL_{n-1}(R')$.

• First step. Let $g_0 \in G \setminus H$ and R' an infinite unital subring of R. We claim that $g_0 H g_0^{-1} \cap L(R')$ has infinite index in L(R').

Indeed, the group $L := g_0 H g_0^{-1} \cap L(R')$ stabilizes the two lines ℓ_0 and $g_0 \ell_0$. Let V be the linear span of the n-1 unit vectors e_2, \ldots, e_n . Denote by ℓ the projection on V of the line $g_0 \ell_0$, parallel to ℓ_0 . As $g\ell_0 \neq \ell_0$, we have $\ell \neq \{0\}$. Moreover, L stabilizes ℓ , since L stabilizes ℓ_0 and V. So, identifying L(R') with the group $\mathrm{SL}_{n-1}(R')$, we see can view L as a subgroup of $\mathrm{SL}_{n-1}(\mathbf{K})$ which stabilizes a line in \mathbf{K}^{n-1} . Lemma 13 shows that L has infinite index in $\mathrm{SL}_{n-1}(R')$, as claimed.

• Second step. We claim that the representation π is irreducible. In view of Theorem 8, it suffices to show that $\operatorname{Comm}_G(H) = H$.

Let $g_0 \in G \setminus H$. By the first step, $g_0 H g_0^{-1} \cap L(R)$ has infinite index in L(R); hence, $g_0 H g_0^{-1} \cap H$ has infinite index in H, since L(R) is a subgroup of H.

• Third step. We claim that $\pi(C^*(G))$ contains a non-zero compact operator.

Indeed, since **K** is not an algebraic extension over its prime field, R contains a subring R' which is a copy **Z** or a copy of the polynomial ring $\mathbf{F}_p[T]$, by Proposition 11. The corresponding subgroup

$$L := L(R')$$

of G is isomorphic to $SL_{n-1}(\mathbf{Z})$ or $SL_{n-1}(\mathbf{F}_p[T])$. Observe that L is a lattice in the locally group $\mathbf{G} = SL_{n-1}(\mathbf{R})$ or $\mathbf{G} = SL_{n-1}(\mathbf{F}_p((T^{-1})))$, where $\mathbf{F}_p((T^{-1}))$ is the local field of Laurent series over \mathbf{F}_p . Since $n-1 \geq 3$, the group \mathbf{G} and hence L has Kazhdan's Property (T); see [BHV-08, §. 1.4, 1.7].

Let S be a system of representatives for the double cosets space $H \setminus G/H$ with $e \in S$. By Proposition 9, the restriction $\pi|_L$ to L of π is

equivalent to the direct sum $\sigma|_L \oplus \pi_0$, where

$$\pi_0 := \bigoplus_{s \in S \setminus \{e\}} \operatorname{Ind}_{s^{-1}Hs \cap L}^L(\sigma^s|_{s^{-1}Hs \cap L}).$$

We claim that π_0 does not weakly contain $\sigma|_L$. Indeed, assume by contradiction that π_0 weakly contains $\sigma|_L$. Since σ is finite dimensional and L has Property (T), it follows that π_0 contains $\sigma|_L$ (see [BHV–08, Theorem 1.2.5]). Therefore, $\operatorname{Ind}_{s^{-1}Hs\cap L}^L(\sigma^s|_{s^{-1}Hs\cap L})$ contains a subrepresentation of $\sigma|_L$ for some $s \in S \setminus \{e\}$. Hence, $s^{-1}Hs \cap L$ has finite index in L, by Proposition 10. Since L = L(R') for an infinite unital subring R' of R, this is a contradiction to the first step.

As in the proof for the case n = 3, we conclude that $\pi(C^*(G))$ contains a non-zero compact operator.

This proves Theorem 3 for $G = \operatorname{GL}_n(R)$ when $n \geq 3$. The case $G = \operatorname{SL}_n(R)$ is proved in exactly the same way.

4.2. **Proof of Corollary 4.** For $n \geq 3$, let $G = GL_n(R)$ for a ring R as above. The irreducible traceable representations of G constructed in the proof of Theorem 3 are of the form $\pi = \operatorname{Ind}_H^G \sigma$ for a finite dimensional representation of the subgroup $H = \begin{pmatrix} R^{\times} & R^{n-1} \\ 0 & GL_{n-1}(R) \end{pmatrix}$. Observe that, $\pi = \operatorname{Ind}_H^G \sigma$ is trivial on the center Z of G, since H contains Z.

By Theorem 8, there are infinitely (respectively, uncountably) many non equivalent such representations π , provided there exists infinitely (respectively, uncountably) non equivalent finite dimensional irreducible representations of H. This will be the case if $GL_{n-1}(R) \ltimes R^{n-1}$, which is a quotient of H, has infinitely (respectively, uncountably) many non equivalent finite dimensional irreducible representations.

(i) Assume that $R = \mathbf{K}$ is an infinite field. It is easy to show that the finite dimensional irreducible representations of $GL_{n-1}(\mathbf{K}) \ltimes \mathbf{K}^{n-1}$ are all of the form

$$\begin{pmatrix} * & * \\ 0 & A \end{pmatrix} \mapsto \chi(\det A), \qquad A \in \operatorname{GL}_{n-1}(\mathbf{K})$$

for some χ in the unitary dual $\widehat{\mathbf{K}^*}$ of \mathbf{K}^* ; as \mathbf{K}^* is infinite, $\widehat{\mathbf{K}^*}$ is a compact infinite group and is therefore uncountable.

(ii) Assume that $R = \mathbf{Z}$.

• Case n = 3. The free group F_2 is a subgroup of finite index in $GL_2(\mathbf{Z})$. There exists uncountably many unitary characters (that is one-dimensional unitary representations) of F_2 . For every such unitary

character χ , the representation $\operatorname{Ind}_{F_2}^{\operatorname{GL}_2(\mathbf{Z})} \chi$ is finite dimensional and so has a decomposition $\bigoplus_i \sigma_i^{(\chi)}$ as a direct sum of finite dimensional irreducible representations $\sigma_i^{(\chi)}$ of $\operatorname{GL}_2(\mathbf{Z})$. One can choose uncountably many pairwise non equivalent representations among the $\sigma_i^{(\chi)}$'s and we obtain in this way uncountably many non equivalent finite dimensional irreducible representations of $\operatorname{GL}_2(\mathbf{Z})$ and hence of $\operatorname{GL}_2(\mathbf{Z}) \ltimes \mathbf{Z}^2$.

• Case $n \ge 4$. The group $\operatorname{GL}_{n-1}(\mathbf{Z}) \ltimes \mathbf{Z}^{n-1}$ has Kazhdan's property (T) and so has at most countably many non equivalent finite dimensional representations (see [Wan-75, Theorem 2.1]). There are indeed *infinitely* many such representations: for every integer $N \ge 1$, the finite group

$$G_N = \operatorname{GL}_{n-1}(\mathbf{Z}/N\mathbf{Z})) \ltimes (\mathbf{Z}/N\mathbf{Z})^{n-1}$$

is a quotient of $\operatorname{GL}_{n-1}(\mathbf{Z}) \ltimes \mathbf{Z}^{n-1}$; infinitely many representations among the irreducible representations of the G_N 's are pairwise non equivalent when viewed as representations of $\operatorname{GL}_{n-1}(\mathbf{Z}) \ltimes \mathbf{Z}^{n-1}$.

References

- [Bek–07] B. Bekka. Operator-algebraic superrigidity for $SL_n(\mathbf{Z})$, $n \geq 3$. Invent. Math. **169** (2007), 401–425.
- [Bek-16] B. Bekka. Spectral rigidity of group actions on homogeneous spaces. Prepint 2017, to appear in "Handbook of group actions, Volume III" (Editors: L. Ji, A. Papadopoulos, S-T Yau); ArXiv 1602.02892.
- [BHV-08] B. Bekka, P. de la Harpe, A. Valette. Kazhdan's Property (T). Cambridge University Press 2008.
- [CaM-84] A. Carey and W. Moran. Characters of nilpotent groups. Math. Proc. Camb. Phil. Soc. 96 (1984), no. 1, 123–137.
- [Cor-75] L. Corwin. Induced representations of discrete groups. Proc. Amer. Math. Soc. 47 (1975), 279–287.
- [Cun-83] J. Cuntz. K-theoretic amenability for discrete groups. J. Reine Angew. Math. 344 (1983), 180–195
- [Dix-77] J. Dixmier. C^{*}-algebras. North-Holland 1977.
- [Gli–61] J. Glimm. Type I C*-algebras. Ann. of Math. (2) **73** (1961), 572–612.
- [Guic-63] A. Guichardet. Caractères des algèbres de Banach involutives. Ann. Inst. Fourier 13 (1963), 1–81.
- [Guiv-80] Y. Guivarc'h. Quelques propriétés asymptotiques des produits de matrices aléatoires. Lecture Notes Math. 774, 17-250, Springer, 1980.
- [How-77] R. Howe. On representations of discrete, finitely generated, torsion-free, nilpotent groups. Pacific J. Math. 73 (1977), no. 2, 281–305.
- [HoR-89] R. Howe, J. Rosenberg. The unitary representation theory of GL(n) of an infinite discrete field. Israel J. Math. **67** (1989), 67–81.
- [Jul-15] P. Julg. A new look at the proof of K-theoretic amenability for groups acting on trees. Bull. Belg. Math. Soc. Simon Stevin **22** (2015), 263–269.
- [JuV-84] P. Julg, A. Valette. K-theoretic amenability for $SL_2(\mathbf{Q}_p)$, and the action on the associated tree. J. Funct. Anal. **58** (1984),194–215.

- [Kiri-65] A.A. Kirillov. Positive definite functions on a group of matrices with elements from a discrete field. Soviet. Math. Dokl. **6** (1965), 707–709.
- [Kle-61] A. Kleppner. On the intertwining number theorem. Proc. Amer. Math. Soc. 12 (1961), 731–733.
- [Mac-51] G.W. Mackey. On induced representations of groups. Amer. J. Math. 73 (1951), 576–592.
- [Mac-52] G.W. Mackey. Induced representations of locally compact groups. I. Ann. of Math. (2) 55 (1952), 101–139.
- [PeT-16] J. Peterson, A. Thom. Character rigidity for special linear groups. J. reine angew. Math. 716 (2016), 207–228.
- $\begin{array}{ll} [\operatorname{Ros}-89] & \operatorname{J.} \operatorname{Rosenberg.} \ \text{Un complément à un théorème de Kirillov sur les caractères} \\ & \operatorname{de}\operatorname{GL}(n) \operatorname{d'un corps infini discret.} \ \operatorname{C.R.} \ \operatorname{Acad.} \ \operatorname{Sci.} \ \operatorname{Paris} \mathbf{309} \ (1989), \ \operatorname{Série} \\ & \operatorname{I}, \ 581-586. \end{array}$
- [Ser-80] J-P. Serre. Trees. Springer-Verlag, Berlin-New York, 1980.
- [Szw-91] R. Szwarc. Groups acting on trees and approximation properties of the Fourier algebra. J. Funct. Anal. 95 (1991), 320–343.
- [VeK-91] A.M. Vershik, S.V. Kerov. Asymptotic theory of the characters of a symmetric group. Functional Anal. Appl. 15 (1982), 246–255.
- [Tho-68] E. Thoma. Eine Charakterisierung diskreter Gruppen vom Typ I. Invent. Math. 6 (1968), 190–196.
- [Wan-75] S.P. Wang. On isolated points in the dual spaces of locally compact groups. Math. Ann. 218 (1975), 19–34.
- [Wei-67] A. Weil. Basic number theory. Die Grundlehren der mathematischen Wissenschaften 144, Springer 1967.

BACHIR BEKKA, UNIV RENNES, CNRS, IRMAR–UMR 6625, CAMPUS BEAULIEU, F-35042 RENNES CEDEX, FRANCE

E-mail address: bachir.bekka@univ-rennes1.fr