Licence 3

Géométrie et isométries – CC2 du 2/12/2016 Durée : 1h; les documents ne sont pas autorisés

NOM, prénom:

Exercice 1. (10P.)

Soit $\mathcal{E} = \mathbf{R}^3$ muni du repère orthonormé canonique $\mathcal{R} = (O; e_1, e_2, e_3)$. On considère l'application affine $f : \mathcal{E} \to \mathcal{E}$ définie par

$$f\left(\begin{array}{c} x\\y\\z \end{array}\right) = \left(\begin{array}{c} -z+2\\x+1\\y+1 \end{array}\right).$$

(i) Déterminer \vec{f} .

(ii) Montrer que \vec{f} est une isométrie et déterminer sa nature géométrique et ses éléments caractéristiques.

(iii) Montrer que f est une isométrie et déterminer sa décomposition canonique, sa nature géométrique et ses éléments caractéristiques.

Exercice 2. (14P.)

Soit \mathcal{E} un espace affine réel de dimension $n \in \mathbb{N}$ et de direction E. Soit $SA(\mathcal{E})$ l'ensemble des bijections affines $f : \mathcal{E} \to \mathcal{E}$ telles que $\det(\vec{f}) = 1$.

(i) Montrer que $SA(\mathcal{E})$ contient toute translation t_v avec $v \in E$.

(ii) Déterminer les homothéties $h_{A,\lambda}$ de centre $A \in \mathcal{E}$ et de rapport $\lambda \in \mathbf{R}, \lambda \neq 0$, telles que $h_{A,\lambda} \in SA(\mathcal{E})$.

(iii) On suppose que \mathcal{E} est un espace affine euclidien et soit $f: \mathcal{E} \to \mathcal{E}$ une isométrie affine. Montrer que $f \in SA(\mathcal{E})$ si et seulement si f est une isométrie directe.

(iv) Montrer que $SA(\mathcal{E})$ est un sous-groupe distingué du groupe affine $GA(\mathcal{E})$.

Rappel: une partie N d'un groupe G est un sous-groupe distingué de G si N est un sous-groupe de G et si, pour tous $g \in G$ et $h \in N$, on a $ghg^{-1} \in N$.

(v) Soit $g \in GA(\mathcal{E})$. Identifier l'isométrie $g \circ h_{A,\lambda} \circ g^{-1}$, où $h_{A,\lambda}$ est une homothétie de centre $A \in \mathcal{E}$ et de rapport $\lambda \neq 0$. En déduire que le centre du groupe affine $GA(\mathcal{E})$ est $\{\mathrm{Id}_{\mathcal{E}}\}$.

Rappel: le centre d'un groupe G est le sous-groupe $Z(G) = \{g \in G | gh = hg \text{ pour tout } h \in G\}$.