Théorie Ergodique des actions de groupes-M2

Examen du 18 mars 2016

Exercice 1. (Vecteurs presqu'invariants-2P.) Soit $(\pi_{\mathbf{R}}, L^2(\mathbf{R}))$ la représentation régulière de \mathbf{R} . Construire explicitement une suite (f_n) dans $L^2(\mathbf{R})$ avec $||f_n||_2 = 1$ et $\lim_{n\to\infty} ||\pi_{\mathbf{R}}(g)f_n - f_n||_2 = 0$ uniformément sur chaque partie compacte de \mathbf{R} .

Exercice 2. (Suites de Følner-8P.) Soit Γ un groupe dénombrable moyennable et soit F une partie finie de Γ .

(i) Soit $\epsilon > 0$. Montrer qu'il existe $f \in \ell^1(\Gamma)_{1,+}$ (c-à-d $f \ge 0$ et $||f||_1 = 1$)

1) tel que

$$\|\pi_{\Gamma}(\gamma)f - f\|_1 \le \epsilon$$
 pour tout $\gamma \in F$

(avec $\pi_{\Gamma}(\gamma)f(x) = f(\gamma^{-1}x)$).

(ii) Soient f, f' deux fonctions dans $\ell^1(\Gamma)$ avec $f \geq 0, f' \geq 0$. Pour t > 0, soit

$$S_t = \{ \gamma \in \Gamma : f(\gamma) > t \} \text{ et } S'_t = \{ \gamma \in \Gamma : f'(\gamma) > t \}.$$

Montrer que

$$||f - f'||_1 = \int_0^{+\infty} \operatorname{Card}(S_t \triangle S'_t) dt;$$

en particulier, $||f||_1 = \int_0^\infty \operatorname{Card}(S_t) dt$.

[Indication : On pourra écrire $\operatorname{Card}(S_t \triangle S_t')$ comme une somme de fonctions indicatrices d'intervalles évaluées en t > 0.]

(iii) Soit $\epsilon > 0$. Montrer qu'il existe une partie finie et non vide S de Γ telle que

$$\frac{\operatorname{Card}(\gamma S \triangle S)}{\operatorname{Card}(S)} \le \epsilon \quad \text{pour tout} \quad \gamma \in F.$$

(iv) Montrer qu'il existe une suite, dite suite de Følner, de parties S_n finies et non vides de Γ telle que

$$\lim_{n} \frac{\operatorname{Card}(\gamma S_{n} \triangle S_{n})}{\operatorname{Card}(S_{n})} = 0 \quad \text{pour tout} \quad \gamma \in \Gamma.$$

(v) Donner un exemple d'une suite de Følner pour $\Gamma={\bf Z}.$

Exercice 3. (Actions ergodiques co-moyennables et propriété (T)-4P.) Soit G un groupe localement compact possédant la propriété (T) et soit $G \curvearrowright (X, m)$ une action avec une mesure m quasi-invariante et σ -finie. On suppose que $G \curvearrowright (X, m)$ est co-moyennable.

(i) Montrer qu'il existe une fonction $f \in L^1(X, m)_{1,+}$ telle que

$$\frac{dgm}{dm}(x)f(gx) = f(x) \qquad \text{pour tout} \quad g \in G, \ x \in X.$$

(ii) On suppose, de plus, que $G \curvearrowright (X, m)$ est ergodique. Montrer que m est équivalente à une mesure de probabilité G-invariante sur X.

Exercice 4. (Actions fortement ergodiques et trou spectral-8P.) Soit Γ un groupe dénombrable discret et $\Gamma \curvearrowright (X, m)$ une action mesurable sur un espace de probabilité (X, \mathcal{B}, m) , avec une mesure Γ -invariante m.

L'action $\Gamma \curvearrowright (X, m)$ est dite fortement ergodique si, pour toute suite $A_n \in \mathcal{B}$ telle que

$$\lim_{n} m(\gamma A_n \triangle A_n) = 0 \quad \text{pour tout} \quad \gamma \in \Gamma,$$

on a $\inf_{n} m(A_n)(1 - m(A_n)) = 0$.

- (i) On suppose que l'action $\Gamma \curvearrowright (X, m)$ possède un trou spectral. Montrer que $\Gamma \curvearrowright (X, m)$ est fortement ergodique.
- (ii) Montrer que, si Γ possède la propriété (T) et si $\Gamma \curvearrowright (X, m)$ est ergoddique, alors $\Gamma \curvearrowright (X, m)$ est fortement ergodique.

Soit Γ_1 le sous groupe de $SL_2(\mathbf{Z})$ engendré par les deux matrices $a=\begin{pmatrix}1&2\\0&1\end{pmatrix}$ et $b=\begin{pmatrix}1&0\\2&1\end{pmatrix}$. On rappelle que Γ_1 est un groupe libre sur $\{a,b\}$.

(iii) Soit $Y = \{0,1\}^{\Gamma_1}$ avec la mesure de probabilité habituelle m. Montrer que l'action de Bernoulli $\Gamma_1 \curvearrowright (Y,m)$ possède un trou spectral et est donc fortement ergodique.

Soit $X:=Y\times \mathbf{N}^*,$ muni de la mesure de probabilité μ définie par

$$\mu(A) = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} m(\{y \in Y : (y, n) \in A\}), \quad A \subset X \text{ mesurable.}$$

On admettra qu'il existe $T: X \to X$ mesurable, bijective et préservant μ telle que $T(Y \times \{n\}) \subset Y \times \{n-1\}$ pour tout $n \geq 2$.

Soit $\Gamma = F_3$ le groupe libre sur 3 générateurs a, b, c (avec a, b comme plus haut). On définit une action de Γ sur (X, μ) par

$$a(y,n) := (ay,n), \ b(y,n) := (by,n), \ c(y,n) := T(y,n) \text{ pour } (y,n) \in X.$$

(iv) Montrer que $\Gamma \curvearrowright (X, \mu)$ est fortement ergodique mais ne possède pas de trou spectral.