
“KAZHDAN’S PROPERTY (T)”

ERRATUM

BY BACHIR BEKKA, PIERRE DE LA HARPE AND ALAIN VALETTE
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1. Page 85, correction of Remark 2.3.7.ii

It is not true that a separable locally compact group which has Kazh-
dan’s Property (T) necessarily has Serre’s Property (FA) as a discrete
group. Indeed, a (discrete) group with Property (FA) cannot be the
union of an increasing sequence of proper subgroups (see [Serre–77],
Remarque 1 in Chap.I, §6, 6.1). However, there are examples of com-
pact groups (which have therefore Property (T) as topological groups)
which can be written as union of a strictly increasing sequence of sub-
groups. For a concrete example, let G =

∏
N Z/2Z be the direct prod-

uct of countably many copies of the two-element group. Since G can
be viewed as a vector space over Z/2Z, there exists a surjective ho-
momorphism ϕ : G → H, where H =

⊕
N Z/2Z is the direct sum of

countably many copies of Z/2Z. We can write H =
⋃
n∈NHn for an

increasing sequence of proper subgroups Hn. So, G is the union of the
increasing sequence of proper subgroups ϕ−1(Hn).

The statement in Remark 2.3.7.ii has to be corrected as follows (and
this is indeed what Alperin shows in [Alper–82]): let G be a separable
locally compact group with Property (T). Then G, viewed as a discrete
group, has Property (FA’), that is, whenever G acts on a tree without
inversion of edges then every element in G has a fixed vertex.

2. Page 91, correction in the definition of ξ0

As defined, the function ξ0 is not in H, because the origin 0 is not
fixed by α. A way out is to introduce representatives (si)i∈I for the left
cosets of H modulo G, so that G =

⊔
i∈I siH, and to define ξ by

ξ0(sih) = α
(
h−1
)
η0 for all i ∈ I and h ∈ H.
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3. Page 92, correction in the proof of Proposition 2.5.9

One should have “Let H be a maximal torsion–free abelian subgroup
of G” instead of “Let H be a maximal free abelian subgroup of G”.

Indeed, the existence of a maximal torsion–free subgroup is a straight-
forward consequence of the Zorn Lemma, whereas a discrete abelian
group G need not have any maximal free abelian subgroup.

4. Page 94, on the hyperbolic distance

Proof that d([x], [y]) is well defined (lines 8-11): in order for the last
inequality (line 9) to hold, one has to assume from the beginning that
xn+1yn+1 ≥ 0; this can be achieved by replacing x by −x, if necessary.

5. Page 210, on the group GX of Proposition 4.3.10

The topology of uniform convergence does not make sense here, un-
less X is assumed to be compact.

More precisely, a topological group has two canonical uniform struc-
tures, the left-invariant one and the right-invariant one (Bourbaki,
Topologie générale, chapitre III, § 3). Very often, they are distinct,
and they don’t make GX a topological group.

However, if X is compact, which is the case of interest in this part of
our book, the compact-open topology on GX has all desired properties
(Bourbaki, Topologie générale, chapitre X, § 3), and this is the topology
which has to be considered here.

6. Pages 185 and 215, on elementary matrices over a field

Remark 4.1.2.i and Exercise 4.4.2: read νn(K) ≤ n2 instead of
νn(K) ≤ n(n− 1).

7. Page 403, on the proof of Proposition F.2.2

It is indeed clear (by Definitions F.1.1 and F.2.1) that, if (πi)i∈I
converges to π, then π is weakly contained in

⊕
j∈J πj for every subnet

(πj)j∈J of (πi)i∈I . Since the proof of the converse is less clear, we give
more details.

Assume, by contradiction, that π is weakly contained in
⊕

j∈J πj for

every subnet (πj)j∈J of (πi)i∈I and that (πi)i∈I does not converge to π.
On the one hand, there exists a neighbourhoodW = W (π, ϕ1, ..., ϕn, ε)

of π (as in Definition F.2.1) and a subnet (πj)j∈J of (πi)i∈I such that no
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πj belongs to W (take J = {i ∈ I : πi /∈ W}). Upon passing to a sub-
net of (πj)j∈J , we can even assume that n = 1, that is, W = W (π, ϕ, ε)
for a function ϕ of positive type associated to π.

Now, ϕ can be approximated, uniformly on compact subsets of G,
by sums of functions of positive type associated to irreducible unitary
representations which are weakly contained in π (see Proposition F.2.7,
which is independent of Proposition F.2.2). So, there exist irreducible
unitary representations σ1, . . . , σn which are weakly contained in π and
functions of positive type ψ1, . . . , ψn associated to σ1, . . . , σn such that
no πj belongs to W (σ, ψ, ε/2), where σ =

⊕n
i=1 σi and ψ =

∑n
i=1 ψi.

On the other hand, π and hence every σi is weakly contained in⊕
j∈J πj. Since σi is irreducible, it follows that every ψi can be approx-

imated, uniformly on compact subsets of G, by functions of positive
type associated to the πj’s (and not just sums of such functions; see
Proposition F.1.4). Upon passing to a subnet of (πj)j∈J , we can ap-
proximate ψ1, ..., ψn, simultaneously and uniformly on compact subsets
of G, by functions of positive type associated to the πj’s. It follows that
πj ∈ W (σ, ψ, ε/2) for appropriate j and this is a contradiction.

8. Page 405, correction in the proof of Proposition F.2.7

The proof (lines 10-19) that ext(C) is contained in ext(P≤1(G)) is
incorrect. This has to be corrected as follows:

Let ϕ ∈ ext(C); decompose ϕ as ϕ = tϕ1+(1−t)ϕ2 for 0 < t < 1 and
ϕ1, ϕ2 ∈ P≤1(G). There exists a (cyclic) representation ρ with cyclic
vector η such that ϕ(x) = 〈ρ(x)η, η〉 for all x ∈ G. As in the proof of
Lemma F.1.3, ϕ1 can be approximated by positive definite functions
associated to ρ of the form

〈
ρ(x)

( n∑
i=1

λiρ(xi)η
)
,

n∑
i=1

λiρ(xi)η
〉
,

that is, by sums of the form
∑n

i,j=1 λiλjϕ(x−1
j xxi). Such a sum ψ lies in

C, since ϕ belongs to C and so every ψ can be approximated by convex
combinations of corresponding functions of positive type associated to
π. This shows that ϕ1 is in C. Similarly, ϕ2 is in C. Since ϕ is an
extreme point in C, it follows that ϕ = ϕ1 = ϕ2, showing that ext(C)
is contained in ext(P≤1(G)).
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9. Page 428, on the proof of Theorem G.3.1

Page 428, Line -6: In order to make the proof that (ii) implies (iii)
more transparent, one should mention that the following formula holds:

〈f ∗ ϕ, g〉 = 〈ϕ, f ∗ ∗ g〉 for all f, g ∈ L1(G), ϕ ∈ L∞(G).

Here 〈ϕ, f〉 =
∫
G
ϕ(x)f(x)dx denotes the duality between L∞(G) and

L1(G); recall that f ∗(x) = f(x−1)∆(x−1) and observe that f ∗ ∈ L1(G)1,+

if f ∈ L1(G)1,+.

10. Some typos

Page 47, Line 11: read “with gα(ei) = λαei”.

Page 204, Line 4 of Lemma 4.3.4: Sign := is missing in
γ ∈ F := {E1,2(±1), E2,1(±1), E1,2(±t), E2,1(±t)}.

Page 313, Line 8: read “each X ∈ K is either a constant or a cen-
tred Gaussian random variable” instead of “each X ∈ K is a centred
Gaussian random variable”.

Page 333, Line 3, Definition B.2.3: read “h1, h2 ∈ H” instead of
“h1, h2 ∈ G”.

Page 393 (Exercise E.4.1): read π±it instead of π±t .

Page 399, Line 3 of Proposition F.1.4: read “a unit vector in H”
instead of “a unit vector H”.

Page 407, Line 1: read “a linear functional” instead of “a positive
linear functional”.

Page 410 (Example F.3.6): read π−it instead of π−t .

Page 455, for [Fell–62] the pages should read 237–268.
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