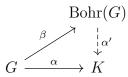
THE BOHR COMPACTIFICATION OF AN ARITHMETIC GROUP

BACHIR BEKKA

ABSTRACT. Given a group Γ , its Bohr compactification Bohr(Γ) and its profinite completion $\operatorname{Prof}(\Gamma)$ are compact groups naturally associated to Γ ; moreover, $\operatorname{Prof}(\Gamma)$ can be identified with the quotient of Bohr(Γ) by its connected component Bohr(Γ)₀. We study the structure of Bohr(Γ) for an arithmetic subgroup Γ of an algebraic group \mathbf{G} over \mathbf{Q} . When \mathbf{G} is unipotent, we show that Bohr(Γ) can be identified with the direct product Bohr(Γ^{Ab})₀ × Prof(Γ), where $\Gamma^{Ab} = \Gamma/[\Gamma, \Gamma]$ is the abelianization of Γ . In the general case, using a Levi decomposition $\mathbf{G} = \mathbf{U} \rtimes \mathbf{H}$ (where \mathbf{U} is unipotent and \mathbf{H} is reductive), we show that Bohr(Γ) can be described as the semi-direct product of a certain quotient of Bohr($\Gamma \cap \mathbf{U}$) with Bohr($\Gamma \cap \mathbf{H}$). When \mathbf{G} is simple and has higher \mathbf{R} -rank, Bohr(Γ) is isomorphic, up to a finite group, to the product $K \times \operatorname{Prof}(\Gamma)$, where K is the maximal compact factor of $\mathbf{G}(\mathbf{R})$.

1. INTRODUCTION

Given a topological group G, the **Bohr compactification** of G is a pair (Bohr(G), β) consisting of a compact (Hausdorff) group Bohr(G) and a continuous homomorphism $\beta : G \to Bohr(G)$ with dense image, satisfying the following universal property: for every compact group K and every continuous homomorphism $\alpha : G \to K$, there exists a continuous homomorphism $\alpha' : Bohr(G) \to K$ such that the diagram



commutes. The pair $(Bohr(G), \beta)$ is unique in the following sense: if (K', β') is a pair consisting of a compact group K' and a continuous homomorphism $\beta' : G \to K'$ with dense image satisfying the same universal property (such a pair will be called a Bohr compactification of

²⁰⁰⁰ Mathematics Subject Classification. 22D10; 22C05; 20E18.

The author acknowledges the support by the ANR (French Agence Nationale de la Recherche) through the project Labex Lebesgue (ANR-11-LABX-0020-01).

G), then there exists an isomorphism α : Bohr(G) $\rightarrow K'$ of topological groups such that $\beta' = \alpha \circ \beta$.

The compact group Bohr(G) was first introduced by A. Weil ([Wei40, Chap.VII]) as a tool for the study of almost periodic functions on G, a subject initiated by H. Bohr ([Boh25a], [Boh25b]) in the case $G = \mathbf{R}$ and generalized to other groups by J. von Neumann ([vN34]) among others. For more on this subject, see [Dix77, §16] or [BH, 4.C]).

The group $Bohr(\Gamma)$ has been determined for only very few non abelian discrete groups Γ (for some general results, see [HK01] and [Hol64]; for the well-known case of abelian groups, see [AK43] and Section 11).

In contrast, there is a second much more studied completion of Γ , namely the **profinite completion** of Γ , which is a pair ($\operatorname{Prof}(\Gamma), \alpha$) consisting of a profinite group (that is, a projective limit of finite groups) $\operatorname{Prof}(\Gamma)$ satisfying a similar universal property with respect to such groups, together with a homomorphism with $\alpha : \Gamma \to \operatorname{Prof}(\Gamma)$ with dense image. The group $\operatorname{Prof}(\Gamma)$ can be realized as the projective limit $\varprojlim \Gamma/H$, where H runs over the family of the normal subgroups of finite index of Γ . For all this, see [RZ00].

The universal property of $\operatorname{Bohr}(\Gamma)$ gives rise to a continuous epimorphism $\alpha' : \operatorname{Bohr}(\Gamma) \to \operatorname{Prof}(\Gamma)$. It is easy to see (see Proposition 7 below) that the kernel of α' is $\operatorname{Bohr}(\Gamma)_0$, the connected component of $\operatorname{Bohr}(\Gamma)$; so, we have a short exact sequence

 $1 \longrightarrow \operatorname{Bohr}(\Gamma)_0 \longrightarrow \operatorname{Bohr}(\Gamma) \longrightarrow \operatorname{Prof}(\Gamma) \longrightarrow 1.$

In this paper, we will deal with the case where Γ is an arithmetic subgroup in a linear algebraic group. The setting is as follows. Let **G** be a connected linear algebraic group over **Q** with a fixed faithful representation $\rho : \mathbf{G} \to GL_m$. We consider the subgroup $\mathbf{G}(\mathbf{Z})$ of the group $\mathbf{G}(\mathbf{Q})$ of **Q**-points of **G**, that is,

$$\mathbf{G}(\mathbf{Z}) = \rho^{-1} \left(\rho(\mathbf{G}) \cap GL_m(\mathbf{Z}) \right).$$

A subgroup Γ of $\mathbf{G}(\mathbf{Q})$ is called an **arithmetic subgroup** if Γ is commensurable to $\mathbf{G}(\mathbf{Z})$, that is, $\Gamma \cap \mathbf{G}(\mathbf{Z})$ has finite index in both Γ and $\mathbf{G}(\mathbf{Z})$. Observe that Γ is a discrete subgroup of the real Lie group $\mathbf{G}(\mathbf{R})$.

We first deal with the case where \mathbf{G} is unipotent. More generally, we describe the Bohr compactification of any finitely generated nilpotent group. Observe that an arithmetic subgroup in a unipotent algebraic \mathbf{Q} -group is finitely generated (see Corollary 2 of Theorem 2.10 in [Rag72]).

For two topological groups H and L, we write $H \cong L$ if H and L are topologically isomorphic. We observe that, when Δ is a finitely

 $\mathbf{2}$

generated abelian group, $Bohr(\Delta)$ splits as a direct sum $Bohr(\Delta) = Bohr(\Delta)_0 \oplus Prof(\Delta)$; see Proposition 11.

Theorem 1. Let Γ be a finitely generated nilpotent group. We have a direct product decomposition

$$\operatorname{Bohr}(\Gamma) \cong \operatorname{Bohr}(\Gamma^{\operatorname{Ab}})_0 \times \operatorname{Prof}(\Gamma)$$

where $\Gamma^{Ab} = \Gamma/[\Gamma, \Gamma]$ is the abelianization of Γ . This isomorphism is induced by the natural maps $\Gamma \to \operatorname{Bohr}(\Gamma^{Ab})$ and $\Gamma \to \operatorname{Prof}(\Gamma)$, together with the projection $\operatorname{Bohr}(\Gamma^{Ab}) \to \operatorname{Bohr}(\Gamma^{Ab})_0$.

A crucial tool in the proof of Theorem 1 is the fact that elements in the commutator subgroup $[\Gamma, \Gamma]$ of a nilpotent group Γ are distorted (see Proposition 15).

We now turn to the case of a general algebraic group \mathbf{G} over \mathbf{Q} . Let \mathbf{U} be the unipotent radical of \mathbf{G} . Then \mathbf{U} is defined over \mathbf{Q} and there exists a connected reductive \mathbf{Q} -subgroup \mathbf{H} such that we have a Levi decomposition as semi-direct product $\mathbf{G} = \mathbf{U} \rtimes \mathbf{H}$ (see [Mos56]).

The group $\Lambda = \mathbf{H}(\mathbf{Z})$ acts by automorphisms on $\Delta = \mathbf{U}(\mathbf{Z})$ and hence on Bohr(Δ), by the universal property of Bohr(Δ). In general, this action does not extend to an action of Bohr(Λ) on Bohr(Δ). However, as we will see below (proof of Theorem 2), Bohr(Λ) acts naturally by automorphisms on an appropriate quotient of Bohr(Δ).

Observe that (see [BHC62, Corollary 4.6]) every arithmetic subgroup of $\mathbf{G}(\mathbf{Q})$ is commensurable to $\Delta(\mathbf{Z}) \rtimes \mathbf{H}(\mathbf{Z})$. Recall that two topological groups G_1 and G_2 are (abstractly) commensurable if there exist finite index subgroups H_1 and H_2 of G_1 and G_2 such that H_1 is topologically isomorphic to H_1 . If this is the case, then $\operatorname{Bohr}(G_1)$ and $\operatorname{Bohr}(G_2)$ are commensurable; in fact, each one of the groups $\operatorname{Bohr}(G_1)$ or $\operatorname{Bohr}(G_2)$ can be described in terms of the other (see Propositions 8 and 9). For this reason, we will often deal with only one chosen representative of the commensurability class of an arithmetic group.

Theorem 2. Let **G** be a connected linear algebraic group over **Q**, with Levi decomposition $\mathbf{G} = \mathbf{U} \rtimes \mathbf{H}$. Set $\Lambda := \mathbf{H}(\mathbf{Z}), \Delta := \mathbf{U}(\mathbf{Z})$, and $\Gamma := \Delta \rtimes \Lambda$. Let $\widehat{\Delta^{Ab}}_{\Lambda-\text{fin}}$ be the subgroup of the dual group $\widehat{\Delta^{Ab}}$ of Δ^{Ab} consisting of the characters with finite Λ -orbit. We have a semi-direct decomposition

$$\operatorname{Bohr}(\Gamma) \cong (Q \times \operatorname{Prof}(\Delta)) \rtimes \operatorname{Bohr}(\Lambda),$$

where Q is the connected component of $\operatorname{Bohr}(\Delta^{\operatorname{Ab}})/N$ and N is the annihilator of $\widehat{\Delta^{\operatorname{Ab}}}_{\Lambda-\operatorname{fin}}$ in $\operatorname{Bohr}(\Delta^{\operatorname{Ab}})$. This isomorphism is induced by the natural homomophisms $\Delta \to \operatorname{Bohr}(\Delta^{\operatorname{Ab}})/N$ and $\Lambda \to \operatorname{Bohr}(\Lambda)$.

Theorems 1 and 2 reduce the determination of $Bohr(\Gamma)$ for an arithmetic group Γ in **G** to the case where **G** is reductive. We have a further reduction to the case where **G** is simply connected and almost simple. Indeed, recall that a group L is the **almost direct product** of subgroups L_1, \ldots, L_n if the product map $L_1 \times \cdots \times L_n \to L$ is a surjective homomorphism with finite kernel.

Let \mathbf{G} be a connected reductive algebraic group over \mathbf{Q} . The commutator subgroup $\mathbf{L} := [\mathbf{G}, \mathbf{G}]$ of \mathbf{G} is a connected semi-simple \mathbf{Q} -group and \mathbf{G} is an almost direct product $\mathbf{G} = \mathbf{TL}$ for a central \mathbf{Q} -torus \mathbf{T} (see (14.2) and (18.2) in [Bor91]) Moreover, \mathbf{L} is an almost direct product $\mathbf{L} = \mathbf{L}_1 \cdots \mathbf{L}_n$ of connected almost \mathbf{Q} -simple \mathbf{Q} -subgroups \mathbf{L}_i , called the almost \mathbf{Q} -simple factors of \mathbf{L} (see [Bor91, (22.10)]). For every $i \in \{1, \ldots, n\}$, let $\widetilde{\mathbf{L}}_i$ be the simply connected covering group \mathbf{L}_i . Set $\widetilde{\mathbf{G}} = \mathbf{T} \times \widetilde{\mathbf{L}}_1 \times \cdots \times \widetilde{\mathbf{L}}_n$. Let $\widetilde{\Gamma}$ be the arithmetic subgroup $\mathbf{T}(\mathbf{Z}) \times \widetilde{\mathbf{L}}_1(\mathbf{Z}) \times \cdots \times \widetilde{\mathbf{L}}_n(\mathbf{Z})$ in $\widetilde{\mathbf{G}}(\mathbf{Q})$. The image Γ of $\widetilde{\Gamma}$ under the isogeny $p: \widetilde{\mathbf{G}} \to \mathbf{G}$ is an arithmetic subgroup of $\mathbf{G}(\mathbf{Q})$ (see Corollaries 6.4 and 6.11 in [BHC62]). The map $p: \widetilde{\Gamma} \to \Gamma$ induces an isomorphism Bohr(Γ) \cong Bohr($\widetilde{\Gamma}$)/F, where F is the finite normal subgroup $F = \widetilde{\beta}(\ker p)$ and $\widetilde{\beta}: \widetilde{\Gamma} \to \operatorname{Bohr}(\widetilde{\Gamma})$ is the natural map (see Proposition 10).

As an easy consequence of Margulis' superrigidity results, we give a description of the Bohr compactification of an arithmetic lattice in a simple algebraic **Q**-group **G** under a higher rank assumption. Such a description does not seem possible for arbitrary **G**. For instance, the free non abelian group F_2 on two generators is an arithmetic lattice in $SL_2(\mathbf{Q})$, but we know of no simple description of $Bohr(F_2)$.

Theorem 3. Let \mathbf{G} be a connected, simply connected, and almost simple \mathbf{Q} -group. Assume that the real semisimple Lie group $\mathbf{G}(\mathbf{R})$ is not locally isomorphic to any group of the form $SO(m, 1) \times K$ or $SU(m, 1) \times K$ for a compact Lie group K. Let \mathbf{G}_{nc} be the product of the almost \mathbf{R} -simple factors \mathbf{G}_i of \mathbf{G} for which $\mathbf{G}_i(\mathbf{R})$ is non compact. Let $\Gamma \subset \mathbf{G}(\mathbf{Q})$ be an arithmetic subgroup. We have a direct product decomposition

$$\operatorname{Bohr}(\Gamma) \cong \operatorname{Bohr}(\Gamma)_0 \times \operatorname{Prof}(\Gamma)$$

and an isomorphism

$$\operatorname{Bohr}(\Gamma)_0 \cong \mathbf{G}(\mathbf{R}) / \mathbf{G}_{\operatorname{nc}}(\mathbf{R}),$$

induced by the natural maps $\Gamma \to \mathbf{G}(\mathbf{R})/\mathbf{G}(\mathbf{R})_{\mathrm{nc}}$ and $\Gamma \to \mathrm{Prof}(\Gamma)$.

A group Γ as in Theorem 3 is an irreducible lattice in the Lie group $G = \mathbf{G}(\mathbf{R})$, that is, the homogeneous space G/Γ carries a G-invariant

probability measure; moreover, Γ is cocompact in *G* if and only if **G** is anisotropic over **Q** (for all this, see [BHC62, (7.8), (11.6)]). The following corollary is a direct consequence of Theorem 3 and of the fact that a non cocompact arithmetic lattice in a semisimple Lie group has nontrivial unipotent elements (see [Mor15, (5.5.14)]).

Corollary 4. With the notation as in Theorem 3, assume that **G** is isotropic over **Q**. For every arithmetic subgroup Γ of $\mathbf{G}(\mathbf{Q})$, the natural map $\operatorname{Bohr}(\Gamma) \to \operatorname{Prof}(\Gamma)$ is an isomorphism.

As shown in Section 6, it may happen that $Bohr(\mathbf{G}(\mathbf{Z})) \cong Prof(\mathbf{G}(\mathbf{Z}))$, even when $\mathbf{G}(\mathbf{Z})$ is cocompact in $\mathbf{G}(\mathbf{R})$..

A general arithmetic lattice Γ has a third completion: the **con**gruence completion $\operatorname{Cong}(\Gamma)$ of Γ is the projective limit $\lim \Gamma/H$, where H runs over the family of the congruence subgroups of Γ ; recall that a normal subgroup of Γ is a congruence subgroup if it contains the kernel of the map $\mathbf{G}(\mathbf{Z}) \to \mathbf{G}(\mathbf{Z}/N\mathbf{Z})$ of the reduction modulo N, for some integer $N \geq 1$. There is a natural surjective homomorphism $\pi : \operatorname{Prof}(\Gamma) \to \operatorname{Cong}(\Gamma)$. The so-called **congruence subgroup problem** asks whether π is injective and hence an isomorphism of topological groups; more generally, one can ask for a description of the kernel of π . This problem has been extensively studied for arithmetic subgroups (and, more generally, for S-arithmetic subgroups) in various algebraic groups; for instance, it is known that π is an isomorphism when $\Gamma = SL_n(\mathbf{Z})$ for $n \geq 3$ or $\Gamma = Sp_{2n}(\mathbf{Z})$ for $n \geq 2$ (see [BMS67]); moreover, the same conclusion is true when $\Gamma = \mathbf{T}(\mathbf{Z})$ for a torus \mathbf{T} (see [Che51]) and when $\Gamma = \mathbf{U}(\mathbf{Z})$ for a unipotent group U (see Proposition 16 below). For more on the congruence subgroup problem, see for instance [Rag76] or [PR94, §9.5].

This paper is organized as follows. In Section 2, we establish some general facts about the Bohr compactifications of commensurable groups and the relationship between Bohr compactifications and unitary representations; we also give an explicit description of the Bohr compactification for a finitely generated abelian group. In Section 3, we give the proof of Theorem 1. Section 4 contains the proof of Theorem 2 and Section 5 the proof of Theorem 3. Section 6 is devoted to the explicit computation of the Bohr compactification for various examples of arithmetic groups.

2. Some preliminaries

2.1. Bohr compactifications and unitary representations. Given a topological group G, we will consider finite dimensional unitary representations of G, that is, continuous homomorphisms $G \to U(n)$. Two

such representations are equivalent if they are conjugate by a unitary matrix. A representation π is irreducible if \mathbb{C}^n and $\{0\}$ there are only $\pi(G)$ -invariant subspaces of \mathbb{C}^n . We denote by $\operatorname{Rep}_{\mathrm{fd}}(G)$ the set of equivalence classes of finite dimensional unitary representations of Gand by $\widehat{G}_{\mathrm{fd}}$ the subset of irreducible ones. Every $\pi \in \operatorname{Rep}_{\mathrm{fd}}(G)$ is a direct sum of representations from $\widehat{G}_{\mathrm{fd}}$

When K is a compact group, every irreducible unitary representation of K is finite dimensional and $\hat{K}_{\rm fd} = \hat{K}$ is the unitary dual space of K. By the Peter-Weyl theorem, \hat{K} separates the points of K.

Let $\beta : G \to H$ be a continuous homomorphism of topological groups G and H with dense image; then β induces *injective* maps

$$\widehat{\beta} : \operatorname{Rep}_{\mathrm{fd}}(H) \to \operatorname{Rep}_{\mathrm{fd}}(G) \quad \text{and} \quad \widehat{\beta} : \widehat{H}_{\mathrm{fd}} \to \widehat{G}_{\mathrm{fd}},$$

given by $\widehat{\beta}(\pi) = \pi \circ \beta$ for $\pi \in \operatorname{Rep}_{fd}(H)$. The following proposition, which may be considered as well-known, is a useful tool for identifying the Bohr compactification of a group.

Proposition 5. Let G be a topological group, K a compact group, and $\beta : G \to K$ a continuous homomorphism with dense image. The following properties are equivalent:

- (i) (K,β) is a Bohr compactification of G;
- (ii) the induced map $\widehat{\beta}: \widehat{K} \to \widehat{G}_{\mathrm{fd}}$ is surjective;
- (iii) the induced map $\widehat{\beta}$: Rep_{fd}(K) \rightarrow Rep_{fd}(G) is surjective.

Proof. Assume that (i) holds and let $\pi : G \to U(n)$ be an irreducible representation of G; by the universal property of the Bohr compactification, there exists a continuous homomorphism $\pi' : K \to U(n)$ such that $\pi = \widehat{\beta}(\pi')$ and (ii) follows.

Conversely, assume that (ii) holds. Let L be a compact group and $\alpha : G \to L$ a continuous homomorphism with dense image. Choose a family $\pi_i : L \to U(n_i)$ of representatives of \hat{L} . By the Peter-Weyl theorem, we may identify L with its image in $\prod_i U(n_i)$ under the map $x \mapsto \bigoplus_i \pi_i(x)$ For every i, we have $\pi_i \circ \alpha \in \hat{G}_{fd}$ and hence $\pi_i \circ \alpha =$ $\hat{\beta}(\pi'_i) = \pi'_i \circ \beta$ for some representation $\pi'_i : K \to U(n_i)$ of K. Define a continuous homomorphism

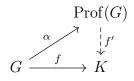
$$\alpha': K \to \prod_i U(n_i) \qquad x \mapsto \oplus_i \pi'_i(x).$$

We have $\alpha' \circ \beta = \alpha$ and hence

$$\alpha'(K) = \alpha'\left(\overline{\beta(G)}\right) \subset \overline{\alpha(G)} = L.$$

So, (i) and (ii) are equivalent. It is obvious that (ii) is equivalent to (iii). \Box

The profinite completion $(\operatorname{Prof}(G), \alpha)$ of G may be similarly characterized in terms of certain unitary representations of G. Recall first that $(\operatorname{Prof}(G), \alpha)$ is a pair consisting of a profinite group $\operatorname{Prof}(G)$ and a continuous homomorphism $\alpha : G \to \operatorname{Prof}(G)$ with dense image, satisfying the following universal property: for every profinite group K and every continuous homomorphism $f : G \to K$, there exists a continuous homomorphism $f' : \operatorname{Bohr}(G) \to K$ such that the diagram



commutes. Recall that the class of profinite groups coincides with the class of totally disconnected compact groups (see [BH, Proposition 4.C.10]).

Denote by $\operatorname{Rep}_{\operatorname{finite}}(G)$ the set of equivalence classes of finite dimensional unitary representations π of G for which $\pi(G)$ is finite; let $\widehat{G}_{\operatorname{finite}}$ be the subset of irreducible representations from $\operatorname{Rep}_{\operatorname{finite}}(G)$.

If $\alpha : G \to H$ is a continuous homomorphism of topological groups G and H with dense image, then β induces *injective* maps

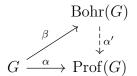
 $\widehat{\alpha}: \operatorname{Rep}_{\operatorname{finite}}(H) \to \operatorname{Rep}_{\operatorname{finite}}(G) \qquad \text{and} \qquad \widehat{\alpha}: \widehat{H}_{\operatorname{finite}} \to \widehat{G}_{\operatorname{finite}}.$

Observe that $\hat{K} = \hat{K}_{\text{finite}}$ if K is a profinite group. (Conversely, it follows from Peter-Weyl theorem that, if K is a compact group with $\hat{K} = \hat{K}_{\text{finite}}$, then K is profinite.) The proof of the following proposition is similar to the proof of Proposition 5 and will be omitted.

Proposition 6. Let K be a totally disconnected compact group and α : $G \rightarrow K$ a continuous homomorphism with dense image. The following properties are equivalent:

- (i) (K, α) is a profinite completion of G;
- (ii) the induced map $\widehat{\alpha} : \widehat{K} \to \widehat{G}_{\text{finite}}$ is surjective;
- (ii) the induced map $\widehat{\beta}$: Rep_{finite} $(K) \to \text{Rep}_{\text{finite}}(G)$ is surjective.

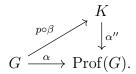
The universal property of Bohr(G) implies that there is a continuous epimorphism α' : $Bohr(G) \to Prof(G)$ such that the diagram



commutes. We record the following elementary but basic fact mentioned in the introduction.

Proposition 7. The kernel of α' : Bohr $(G) \to Prof(G)$ coincides with the connected component Bohr $(G)_0$ of Bohr(G).

Proof. Since $\operatorname{Bohr}(G)_0$ is connected and $\operatorname{Prof}(G)$ is totally disconnected, $\operatorname{Bohr}(G)_0$ is contained in $\operatorname{Ker}\alpha'$. So, α' factorizes to a continuous epimorphism $\alpha'' : K \to \operatorname{Prof}(G)$, where $K := \operatorname{Bohr}(G)/\operatorname{Bohr}(G)_0$ and we have a commutative diagram



where $p : \operatorname{Bohr}(G) \to K$ is the canonical epimorphism. Since K is a totally disconnected compact group, there exists a continuous epimorphism $f : \operatorname{Prof}(G) \to K$ and we have a commutative diagram

$$G \xrightarrow{p \circ \beta} f \uparrow f f f f$$

For every $g \in G$, we have

$$f(\alpha''(p \circ \beta(g))) = f(\alpha(g)) = p \circ \beta(g);$$

since $p \circ \beta(G)$ is dense in K, it follows that $f \circ \alpha''$ is the identity on K. This implies that α'' is injective and hence an isomorphism. \Box

2.2. Bohr compactifications of commensurable groups. Let G be a topological group and H be a closed subgroup of finite index in G. We first determine Bohr(H) in terms of Bohr(G).

Proposition 8. Let $(Bohr(G), \beta)$ be the Bohr compactification of G. Set $K := \overline{\beta(H)}$.

- (i) K is a subgroup of finite index of Bohr(G).
- (ii) $(K, \beta|_H)$ is a Bohr compactification of H.

(iii) K and Bohr(G) have the same connected component of the identity.

Proof. Item (i) is obvious and Item (iii) follows from Item (i). To show Item (ii), let π be a unitary representation of H on \mathbb{C}^n . Since H has finite index in H, the induced representation $\rho := \operatorname{Ind}_H^G \pi$, which is a unitary representation of G, is finite dimensional. Hence, there exists $\rho' \in \operatorname{Rep}_{\mathrm{fd}}(\operatorname{Bohr}(G))$ such that $\rho = \rho' \circ \beta$. Now, π is equivalent to a subrepresentation of the restriction of ρ to H (see [BH, 1.F]); so, we may identify π with the representation of H defined by a $\rho(H)$ invariant subspace W of the space of ρ . Then W is $\rho'(K)$ -invariant and defines therefore a representation π' of K. We have $\pi = \pi' \circ (\beta|_H)$ and Proposition 5 shows that Item (ii) holds. \Box

Next, we want to determine Bohr(G) in terms of Bohr(H).

Given a compact group K and a finite set X, we define another compact group, we call the **induced group** of (K, X), as

$$\operatorname{Ind}(K, X) := K^X \rtimes \operatorname{Sym}(X),$$

where the group Sym(X) of bijections of X acts by permutations of indices on K^X :

$$\sigma((g_x)_{x \in X}) = (g_{\sigma^{-1}(x)})_{x \in X} \quad \text{for all} \quad \sigma \in \text{Sym}(X), (g_x)_{x \in X} \in K^X$$

Observe that, if $\pi : K \to U(n)$ is a representation of K on $V = \mathbb{C}^n$, then a unitary representation $\operatorname{Ind}(\pi)$ of $\operatorname{Ind}(K, X)$ on on V^X is defined by

$$Ind(\pi)((g_x)_{x \in X}, \sigma)(v_x)_{x \in X} = (\pi(g_x)v_{\sigma^{-1}(x)})_{x \in X},$$

for $((g_x)_{x \in X}, \sigma) \in \text{Ind}(K, X)$ and $(v_x)_{x \in X} \in V^X$.

Coming back to our setting, where H is a closed subgroup of finite index in G, we fix a transversal X for the right cosets of H; so, we have a disjoint union $G = \bigsqcup_{x \in X} Hx$. For every $g \in G$ and $x \in X$, let $x \cdot g$ and c(x,g) be the unique elements in X and H such that $xg = c(x,g)(x \cdot g)$. Observe that

$$X \times G \to X, \qquad (x,g) \mapsto x \cdot g$$

is an action of G on X (on the right), which is equivalent to the natural action of G on $H \setminus G$ given by right multiplication. In particular, for every $g \in G$, the map $\sigma(g) : x \mapsto x \cdot g^{-1}$ belongs to Sym(X) and we have a homomorphism

$$G \mapsto \operatorname{Sym}(X), \ g \mapsto \sigma(g).$$

Proposition 9. Let $(Bohr(H), \beta)$ be the Bohr compactification of H. Let Ind(Bohr(H), X) be the compact group defined as above. Consider the map $\tilde{\beta}: G \to Ind(Bohr(H), X)$ defined by

$$\widetilde{\beta}(g) = (\beta(c(x,g)))_{x \in X}, \sigma(g)) \quad \text{for all} \quad g \in G.$$

The closure of $\widetilde{\beta}(G)$ in $\operatorname{Ind}(\operatorname{Bohr}(H), X)$, together with the map $\widetilde{\beta}$, is a Bohr compactification of G.

Proof. It is readily checked that $\widetilde{\beta} : G \to \operatorname{Ind}(\operatorname{Bohr}(H), X)$ is a continuous homomorphism. Let $\rho : G \to U(n)$ be a finite dimensional unitary representation of G. Set $\pi := \rho|_H \in \operatorname{Rep}_{\mathrm{fd}}(H)$. There exists $\pi' \in \operatorname{Rep}_{\mathrm{fd}}(\operatorname{Bohr}(H))$ such that $\pi = \pi' \circ \beta$. Let $\widetilde{\pi} := \operatorname{Ind}_H^G \pi$. As is well-known (see [BH, 1.F]), $\widetilde{\pi}$ can be realized on V^X for $V := \mathbb{C}^n$ by the formula

$$\widetilde{\pi}(g)(v_x)_{x \in X}) = (\pi(c(x,g))v_{x \cdot g})_{x \in X} = (\pi(c(x,g))v_{\sigma(g^{-1})x})_{x \in X},$$

for all $g \in G$ and $(v_x)_{x \in X} \in V^X$. With the unitary representation $\operatorname{Ind}(\pi')$ of $\operatorname{Ind}(\operatorname{Bohr}(H), X)$ defined as above, we have therefore

$$(*) \qquad \widetilde{\pi}(g) = \operatorname{Ind}(\pi')(\widetilde{\beta}(g)) \qquad \text{for all} \quad g \in G,$$

that is, $\widetilde{\pi} = \operatorname{Ind}(\pi') \circ \widetilde{\beta}$. Now,

$$\widetilde{\pi} = \operatorname{Ind}_{H}^{G} \pi = \operatorname{Ind}_{H}^{G}(\rho|_{H})$$

is equivalent to the tensor product representation $\rho \otimes \lambda_{G/H}$, where $\lambda_{G/H}$ is the regular representation of G/H (see [BHV08, E.2.5]). Since $\lambda_{G/H}$ contains the trivial representation of G, it follows that ρ is equivalent to a subrepresentation of $\widetilde{\pi}$; so, we can identify ρ with the representation of G defined by a $\widetilde{\pi}(G)$ -invariant subspace W of V^X . Denoting by L the closure of $\widetilde{\beta}(G)$, it follows from (*) that W is invariant under $\operatorname{Ind}(\pi')(L)$ and so defines a representation ρ' of L. Then $\rho = \rho' \circ \widetilde{\beta}$ and the claim follows from Proposition 5.

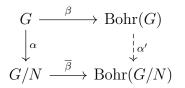
We will also need the following well-known (see [HK01, Lemma 2.2]) description of the Bohr compactification of a quotient of G in terms of the Bohr compactification of G.

Proposition 10. Let $(Bohr(G), \beta)$ be the Bohr compactification of the topological group G and let N be a closed normal subgroup of G. Let K_N be the closure of $\beta(N)$ in Bohr(G)

- (i) K_N is a normal subgroup of Bohr(G) and β induces a continuous homomorphism $\overline{\alpha} : G/N \to Bohr(G)/K_N$
- (ii) $(Bohr(G)/K_N, \overline{\alpha})$ is a Bohr compactification of G/N.

11

Proof. Let $(Bohr(G/N), \overline{\beta})$ be the Bohr compactification of G/N. The canonical homomorphism $\alpha : G \to G/N$ induces a continuous homomorphism $\alpha' : Bohr(G) \to Bohr(G/N)$ such that the diagram



commutes. It follows that $\beta(N)$ and hence K_N is contained in Ker α' . So, we have induced homomorphisms $\overline{\alpha} : G/N \to \operatorname{Bohr}(G)/K_N$ and $\overline{\alpha'} : \operatorname{Bohr}(G)/K_N \to \operatorname{Bohr}(G/N)$, giving rise to a commutative diagram

$$G/N \xrightarrow{\overline{\alpha}} Bohr(G)/K_N$$

$$\downarrow^{\overline{\alpha'}}_{\overline{\beta}} Bohr(G/N).$$

It follows that $(\operatorname{Bohr}(G)/K_N, \overline{\alpha})$ has the same universal property for G/N as $(\operatorname{Bohr}(G/N), \overline{\beta})$. Since $\overline{\alpha}$ has dense image, $(\operatorname{Bohr}(G)/K_N, \overline{\alpha})$ is therefore a Bohr compactification of G/N.

2.3. Bohr compactification of finitely generated abelian groups. Let G be a locally compact abelian group. Its dual group \widehat{G} consists of the continuous homomorphism from G to the circle group \mathbf{S}^1 ; equipped with the topology of uniform convergence on compact subsets, \widehat{G} is again a locally compact abelian group. Let $\widehat{G}_{\text{disc}}$ be the group \widehat{G} equipped with the discrete topology. It is well-known (see e.g. [BH, Proposition 4.C.4]) that the Bohr compactification of G coincides with the dual group K of $\widehat{G}_{\text{disc}}$, together with the embedding $i: G \to K$ given by $i(g)(\chi) = \chi(g)$ for all $g \in G$ and $\chi \in \widehat{G}$. Notice that this implies that, by Pontrjagin duality, the dual group of Bohr(G) coincides with $\widehat{G}_{\text{disc}}$.

A more precise information on the structure of the Bohr compactification is available in the case of a (discrete) finitely generated abelian group. As is well-known, such a group Γ splits a direct sum $\Gamma = F \oplus A$ of a finite group F (which is its torsion subgroup) and a free abelian group A of finite rank $k \geq 0$, called the rank of Γ . Recall that \mathbf{Z}_p denotes the ring of p-adic integers for a prime p and \mathbf{A} the ring of adèles over \mathbf{Q} .

Proposition 11. Let Γ be a finitely generated abelian group of rank k.

(i) We have a direct sum decomposition

 $\operatorname{Bohr}(\Gamma) \cong \operatorname{Bohr}(\Gamma)_0 \oplus \operatorname{Prof}(\Gamma).$

(ii) We have

$$\operatorname{Prof}(\Gamma) \cong F \oplus \prod_{p \text{ prime}} \mathbf{Z}_p^k,$$

where F is a finite group.

(iii) We have

$$\operatorname{Bohr}(\Gamma)_0 \cong \prod_{\omega \in \mathfrak{c}} \mathbf{A}^k / \mathbf{Q}^k,$$

a product of uncountably many copies of the adelic solenoid $\mathbf{A}^k/\mathbf{Q}^k$.

Proof. We have $\Gamma \cong F \oplus \mathbf{Z}^k$ for a finite group F and $\text{Bohr}(\mathbf{Z}^k) = \text{Bohr}(\mathbf{Z})^k$. So, it suffices to determine $\text{Bohr}(\mathbf{Z})$. As mentioned above, $\text{Bohr}(\mathbf{Z})$ can be identified with the dual group of the circle \mathbf{S}^1 viewed as discrete group. Choose a linear basis $\{1\} \cup \{x_{\omega} \mid \omega \in \mathfrak{c}\}$ of \mathbf{R} over \mathbf{Q} . Then $\mathbf{S}^1 \cong \mathbf{R}/\mathbf{Z}$ is isomorphic to the abelian group

$$(\mathbf{Q}/\mathbf{Z}) \oplus \oplus_{\omega \in \mathfrak{c}} \mathbf{Q}.$$

Hence,

$$\operatorname{Bohr}(\mathbf{Z}) \cong \widehat{\mathbf{Q}/\mathbf{Z}} \oplus \prod_{\omega \in \mathfrak{c}} \widehat{\mathbf{Q}}.$$

Now,

$$\mathbf{Q}/\mathbf{Z} = \bigoplus_{p \text{ prime}} Z(p^{\infty}),$$

with $Z(p^{\infty}) = \lim_{k \to k} \mathbf{Z}/p^k \mathbf{Z}$ the *p*-primary component of \mathbf{Q}/\mathbf{Z} . Hence,

$$\widehat{Z(p^{\infty})} \cong \varprojlim_k \mathbf{Z}/p^k \mathbf{Z} = \mathbf{Z}_p.$$

On the other hand, $\widehat{\mathbf{Q}}$ can be identified with the solenoid \mathbf{A}/\mathbf{Q} (see e.g. [HR79, (25.4)]). It follows that

$$\operatorname{Bohr}(\Gamma) \cong \prod_{p \text{ prime}} \mathbf{Z}_p \oplus \prod_{\omega \in \mathfrak{c}} \mathbf{A}/\mathbf{Q}.$$

2.4. Restrictions of representations to normal subgroups. Let Γ be a group and N a normal subgroup of Γ . Recall that Γ acts on $\hat{N}_{\rm fd}$: for $\sigma \in \hat{N}_{\rm fd}$ and $\gamma \in \Gamma$, the conjugate representation $\sigma^{\gamma} \in \hat{N}_{\rm fd}$ is defined by

$$\sigma^{\gamma}(n) = \sigma(\gamma^{-1}n\gamma), \text{ for all } n \in N.$$

The stabilizer Γ_{σ} of σ is the subgroup consisting of all $\gamma \in \Gamma$ for which σ^{γ} is equivalent σ ; observe that Γ_{σ} contains N.

Given a unitary representation ρ of N on a finite dimensional vector space V and $\sigma \in \widehat{N}_{\rm fd}$, we denote by V^{σ} the σ -isotypical component of ρ , that is, the sum of all ρ -invariant subspaces W for which the restriction of ρ to W is equivalent to σ . Observe that V decomposes as direct sum $V = \bigoplus_{\sigma \in \Sigma_{\rho}} V^{\sigma}$, where Σ_{ρ} is the finite set of $\sigma \in \widehat{N}_{\rm fd}$ with $V^{\sigma} \neq \{0\}$.

Proposition 12. Let π be an irreducible unitary representation of Γ on a finite dimensional vector space V. Let $V = \bigoplus_{\sigma \in \Sigma_{\pi|N}} V^{\sigma}$ be the decomposition of the restriction $\pi|_N$ of π to N into isotypical components. Then $\Sigma_{\pi|_N}$ coincides with a Γ -orbit: there exists $\sigma \in \widehat{N}_{\text{fd}}$ such that $\Sigma_{\pi|_N} = \{\sigma^{\gamma} : \gamma \in \Gamma\}$; in particular, Γ_{σ} has finite index in Γ .

Proof. Let $\sigma \in \Sigma_{\pi|_N}$ and fix a transversal T for the left cosets of Γ_{σ} with $e \in T$. Then $V^{\sigma^t} = \pi(t)V^{\sigma}$ for all $t \in T$ Since π is irreducible and $\sum_{t \in T} \pi(t)V^{\sigma}$ is $\pi(\Gamma)$ -invariant, it follows that $\Sigma_{\pi|_N}$ is a Γ -orbit. \Box

3. Proof of Theorem 1

3.1. Distortion and Bohr compactification. Let Γ be a finitely generated group with a finite set S of generators. For $\gamma \in \Gamma$, denote by $\ell_S(\gamma)$ the word length of γ with respect to $S \cup S^{-1}$ and set

$$t(\gamma) = \liminf_{n \to \infty} \frac{\ell_S(\gamma^n)}{n}$$

The number $t(\gamma)$ is called the *translation number* of γ in [GS91]

Definition 13. An element $\gamma \in \Gamma$ is said to be **distorted** if $t(\gamma) = 0$.

In fact, since the sequence $n \mapsto \ell_S(\gamma^n)$ is subadditive, we have, by Fekete's lemma,

$$t(\gamma) = \lim_{n \to \infty} \frac{\ell_S(\gamma^n)}{n} = \inf\left\{\frac{\ell_S(\gamma^n)}{n} : n \in \mathbf{N}^*\right\}$$

The property of being distorted is independent of the choice of the set of generators. Distorted elements are called *algebraically parabolic* in [BGS85, (7.5), p.90], but we prefer to use the terminology from [FH06]. The relevance of distorsion to the Bohr compactification lies

in the following proposition; for a related result with a similar proof, see [LMR00, (2.4)].

Proposition 14. Let Γ be a finitely generated group and $\gamma \in \Gamma$ a distorted element. Then, for every finite dimensional unitary representation $\pi : \Gamma \to U(N)$ of Γ , the matrix $\pi(\gamma) \in U(N)$ has finite order.

Proof. It suffices to show that all eigenvalues of the unitary matrix $\pi(\gamma)$ are roots of unity. Assume, by contradiction, that π has an eigenvalue $\lambda \in \mathbf{S}^1$ of infinite order.

Let S be a finite set of generators of Γ with $S = S^{-1}$. The group $\pi(\Gamma)$ is generated by the set $\{\pi(s) \mid s \in S\}$. Hence, $\pi(G)$ is contained in $GL_N(L)$, where L is the subfield of C generated by the matrix coefficients of the $\pi(s)$'s. It follows that λ is contained in a finitely generated extension ℓ of L. By a lemma of Tits ([Tit72, Lemma 4.1]), there exists a locally compact field k endowed with an absolute value $|\cdot|$ and a field embedding $\sigma : \ell \to k$ such that $|\sigma(\lambda)| \neq 1$. Upon replacing γ by γ^{-1} , we may assume that $|\sigma(\lambda)| > 1$.

Define a function ("norm") $\xi \mapsto \|\xi\|$ on k^N by

$$\|\xi\| = \max\{|\xi_1|, \dots, |\xi_N|\}$$
 for all $\xi = (\xi_1, \dots, \xi_N) \in k^N$.

For a matrix $A \in GL_N(k)$, set $||A|| = \sup_{\xi \neq 0} ||A\xi|| / ||\xi||$. It is obvious that $||A\xi|| \le ||A|| ||\xi||$ for all $\xi \in k^N$ and hence

(*)
$$||AB|| \le ||A|| ||B||$$
 for all $A, B \in GL_N(k)$.

In particular, we have $||A^n|| \leq ||A||^n$ for all $A \in GL_N(k)$ and $n \in \mathbf{N}$.

For a matrix $w \in GL_n(\ell)$, denote by $\sigma(w)$ the matrix in $GL_n(k)$ obtained by applying σ to the entries of w. Set $A_s = \sigma(\pi(s))$ for $s \in S$ and $A := \sigma(\pi(\gamma))$. With

$$C := \max\{\|A_s\| : s \in S\},\$$

it is clear that Inequality (*) implies that

(**)
$$||A^n|| = ||\sigma(\pi(\gamma^n))|| \le C^{\ell_S(\gamma^n)}$$
 for all $n \in \mathbf{N}$.

On the other hand, $\sigma(\lambda)$ is an eigenvalue of A; so, there exists $\xi \in k^N \setminus \{0\}$ such that $A\xi = \sigma(\lambda)\xi$ and hence $A^n\xi = \sigma(\lambda)^n\xi$ for all $n \in \mathbf{N}$. So, for every $n \in \mathbf{N}$, we have

$$||A^n\xi|| = |\sigma(\lambda)|^n ||\xi||$$

and this implies that

$$||A^n|| \ge |\sigma(\lambda)|^n.$$

In view of (**), we obtain therefore

$$\frac{\ell_S(\gamma^n)\log C}{n} \ge \log |\sigma(\lambda)| \quad \text{for all} \quad n \in \mathbf{N}.$$

Since $|\sigma(\lambda)| > 1$, this contradicts the fact that $\liminf_{n \to \infty} \frac{\ell_S(\gamma^n)}{n} = 0.$

3.2. Distorted elements in nilpotent groups. Let Γ be a finitely generated nilpotent subgroup. For subsets A, B in Γ , we let [A, B] denote the subgroup of Γ generated by all commutators $[a, b] = aba^{-1}b^{-1}$, for $a \in A$ and $b \in B$. Let

$$\Gamma^{(0)} \supset \Gamma^{(1)} \supset \cdots \supset \Gamma^{(d-1)} \supset \Gamma^{(d)} = \{e\}$$

be the lower central series of Γ , defined inductively by $\Gamma^{(0)} = \Gamma$ and $\Gamma^{(k+1)} = [\Gamma^{(k)}, \Gamma]$. The step of nilpotency of Γ is the smallest $d \ge 1$ such that $\Gamma^{(d-1)} \neq \{e\}$ and $\Gamma^{(d)} = \{e\}$.

Proposition 15. Let Γ be a finitely generated nilpotent subgroup. Every $\gamma \in \Gamma^{(1)} = [\Gamma, \Gamma]$ is distorted.

Proof. Let S be a finite set of generators of Γ with $S = S^{-1}$. Let $d \ge 1$ be the step of nilpotency of Γ . The case d = 1 being trivial, we will assume that $d \ge 2$. We will show by induction on $i \in \{1, \ldots, d-1\}$ that every $\gamma \in \Gamma^{(d-i)}$ is distorted.

• First step. Assume that i = 1. It is well-known that every element γ in $\Gamma^{(d-1)}$ is distorted (see for instance [BGS85, (7.6), p. 91]); in fact, more precise estimates are available: for every $\gamma \in \Gamma^{(d-1)}$, we have $\ell_S(\gamma^n) = O(n^{1/d})$ as $n \to \infty$ (see [Tit81, 2.3 Lemme] or [DK18, Lemma 14.15]).

• Second step. Assume that, for every finitely generated nilpotent subgroup Λ of step $d' \geq 2$, every element $\delta \in \Lambda^{(d'-i)}$ is distorted for $i \in \{1, \ldots, d'-2\}$. Let $\gamma \in \Gamma^{(d-i-1)}$ and fix $\varepsilon > 0$.

The quotient group $\overline{\Gamma} = \Gamma/\Gamma^{(d-1)}$ is nilpotent of step d' = d-1 and $p(\gamma) \in \overline{\Gamma}^{(d'-i)}$, where $p : \Gamma \to \overline{\Gamma}$ is the quotient map. By induction hypothesis, $p(\gamma)$ is distorted in $\overline{\Gamma}$ with respect to the generating set $\overline{S} := p(S)$. So, we have $\lim_{n\to\infty} \frac{\ell_{\overline{S}}(p(\gamma)^n)}{n} = 0$; hence, we can find an integer $N \ge 1$ such that

(*)
$$\forall n \ge N, \exists \delta_n \in \Gamma^{(d-1)} : \frac{\ell_S(\gamma^n \delta_n)}{n} \le \varepsilon.$$

By the first step, we have $\lim_{k\to\infty} \frac{\ell_S(\delta_N^k)}{k} = 0$, since $\delta_N \in \Gamma^{(d-1)}$; so, there exists $K \ge 1$ such that

(**)
$$\forall k \ge K : \frac{\ell_S(\delta_N^k)}{k} \le \varepsilon.$$

Let $k \geq K$. We have

$$(***) \qquad \frac{\ell_S(\gamma^{Nk})}{Nk} = \frac{\ell_S((\gamma^{Nk}\delta_N^k)(\delta_N^{-1})^k)}{Nk} \le \frac{\ell_S(\gamma^{Nk}\delta_N^k)}{Nk} + \frac{\ell_S(\delta_N^k)}{Nk}.$$

Now, since $\Gamma^{(d-1)}$ is contained in the center of Γ , the elements δ_N and γ_N commute and hence, by (*), we have

$$\frac{\ell_S(\gamma^{Nk}\delta_N^k)}{Nk} = \frac{\ell_S((\gamma^N\delta_N)^k)}{Nk} \le k\frac{\ell_S(\gamma^N\delta_N)}{Nk} = \frac{\ell_S(\gamma^N\delta_N)}{N} \le \varepsilon.$$

So, together with (* * *) and (**), we obtain

$$\forall k \ge K \; : \; \frac{\ell_S(\gamma^{Nk})}{Nk} \le 2\varepsilon$$

This shows that $t(\gamma) = 0$.

3.3. Congruence subgroups in unipotent groups. The following result, which shows that the congruence subgroup problem has a positive solution for unipotent groups, is well-known (see the sketch in [Rag76, p.108]); for the convenience of the reader, we reproduce its short proof.

Proposition 16. Let U be a unipotent algebraic group over Q. Let Γ be an arithmetic subgroup of U(Q). Then every finite index subgroup of Γ is a congruence subgroup.

Proof. We can find a sequence

$$\mathbf{U} = \mathbf{U}_0 \supset \mathbf{U}_1 \supset \cdots \supset \mathbf{U}_{d-1} \supset \mathbf{U}_d = \{e\}$$

of normal **Q**-subgroups of **U** such that the factor groups $\mathbf{U}_i/\mathbf{U}_{i+1}$ are **Q**-isomorphic to \mathbf{G}_a , the additive group of dimension 1 (see [Bor63, (15.5)]).

We proceed by induction on $d \ge 1$. If d = 1, then Γ is commensurable to \mathbf{Z} and the claim is obvious true. Assume that $d \ge 2$. Then \mathbf{U} can be written as semi-direct product $\mathbf{U} = \mathbf{U}_1 \rtimes \mathbf{G}_a$. By [BHC62, Corollary 4.6], Γ is commensurable to $\mathbf{U}_1(\mathbf{Z}) \rtimes \mathbf{Z}$. Let H a subgroup of finite index in Γ . Then $H \cap \mathbf{U}_1(\mathbf{Z})$ has finite index in $\mathbf{U}_1(\mathbf{Z})$ and hence, by induction hypothesis, contains the kernel of the reduction $\mathbf{U}_1(\mathbf{Z}) \to \mathbf{U}_1(\mathbf{Z}/N_1\mathbf{Z})$ modulo some $N_1 \ge 1$. Moreover, $H \cap \mathbf{Z} = N_2\mathbf{Z}$ for some $N_2 \ge 1$. Hence, H contains the kernel of the reduction $\mathbf{U}(\mathbf{Z}) \to \mathbf{U}(\mathbf{Z}/N_1N_2\mathbf{Z})$ modulo N_1N_2 .

16

3.4. **Proof of Theorem 1.** Let Γ be a finitely generated nilpotent group and $\alpha : \Gamma \to \operatorname{Prof}(\Gamma)$ the canonical homomorphism. Recall (see Proposition 11) that the Bohr compactification of $\Gamma^{Ab} = \Gamma/[\Gamma, \Gamma]$ splits as a direct sum

$$Bohr(\Gamma^{Ab}) = Bohr(\Gamma^{Ab})_0 \oplus B_1,$$

for a closed subgroup $B_1 \cong \operatorname{Prof}(\Gamma^{\operatorname{Ab}})$. Let $p : \operatorname{Bohr}(\Gamma^{\operatorname{Ab}}) \to \operatorname{Bohr}(\Gamma^{\operatorname{Ab}})_0$ be the corresponding projection. Denote by $\beta_0 : \Gamma \to \operatorname{Bohr}(\Gamma^{\operatorname{Ab}})$ the map induced by the quotient homomorphism $\Gamma \to \Gamma^{\operatorname{Ab}}$. Set

$$K := \operatorname{Bohr}(\Gamma^{\operatorname{Ab}})_0 \times \operatorname{Prof}(\Gamma),$$

and let $\beta : \Gamma \to K$ be the homomorphism $\gamma \mapsto (p \circ \beta_0(\gamma), \alpha(\gamma))$. We claim that (K, β) is a Bohr compactification for Γ .

• First step. We claim that $\beta(\Gamma)$ is dense in K. Indeed, let L be the closure of $\beta(\Gamma)$ in K and L_0 its connected component. Since $\operatorname{Prof}(\Gamma)$ is totally disconnected, the projection of L_0 on $\operatorname{Prof}(\Gamma)$ is trivial; hence $L_0 = K_0 \times \{1\}$ for a connected closed subgroup K_0 of $\operatorname{Bohr}(\Gamma^{Ab})_0$. The projection of L on $\operatorname{Bohr}(\Gamma^{Ab})_0$ induces then a continuous homomorphism

$$f: L/L_0 \to \operatorname{Bohr}(\Gamma^{\operatorname{Ab}})_0/K_0.$$

Observe that f has dense image, since $p \circ \beta_0(\Gamma)$ is dense in $\operatorname{Bohr}(\Gamma^{Ab})_0$; so, f is surjective by compactness of L/L_0 . It follows, by compactness again, that $\operatorname{Bohr}(\Gamma^{Ab})_0/K_0$ is topologically isomorphic to a quotient of L/L_0 . As L/L_0 is totally disconnected, this implies (see [Bou71, Chap. 3, §4, Corollaire 3]) that $\operatorname{Bohr}(\Gamma^{Ab})_0/K_0$ is also totally disconnected and hence that $K_0 = \operatorname{Bohr}(\Gamma^{Ab})_0$. So, $\operatorname{Bohr}(\Gamma^{Ab})_0 \times \{1\}$ is contained in L. It follows that L is the product of $\operatorname{Bohr}(\Gamma^{Ab})_0$ with a subgroup of $\operatorname{Prof}(\Gamma)$. Since $\alpha(\Gamma)$ is dense in $\operatorname{Prof}(\Gamma)$, this subgroup coincides with $\operatorname{Prof}(\Gamma)$, that is, L = K and the claim is proved.

• Third step. We claim that every irreducible unitary representation $\pi: \Gamma \to U(N)$ of Γ is of the form $\chi \otimes \rho$ for some $\chi \in \widehat{\Gamma^{Ab}}$ and $\rho \in \widehat{\Gamma}_{\text{finite}}$.

Indeed, Propositions 14 and 15, imply that $\pi([\Gamma, \Gamma])$ is a periodic subgroup of U(N). Since Γ is finitely generated, $[\Gamma, \Gamma]$ is finitely generated (in fact, every subgroup of Γ is finitely generated; see [Rag72, 2.7 Theorem]). Hence, by Schur's theorem (see [Weh73, 4.9 Corollary]), $\pi([\Gamma, \Gamma])$ is finite. It follows that there exists a finite index normal subgroup H of $[\Gamma, \Gamma]$ so that $\pi|_{H}$ is the trivial representation of H.

Next, we claim that there exists a normal subgroup Δ of finite index in Γ such that $\Delta \cap [\Gamma, \Gamma] = H$. Indeed, since $\Gamma/[\Gamma, \Gamma]$ is abelian and finitely generated, we have $\Gamma/[\Gamma, \Gamma] \cong \mathbb{Z}^k \oplus F$ for some finite subgroup F and some integer $k \geq 0$. Let Γ_1 be the inverse image in Γ of the copy

of \mathbf{Z}^k in $\Gamma/[\Gamma, \Gamma]$. Then Γ_1 is a normal subgroup of finite index of Γ . Moreover, Γ_1 can be written as iterated semi-direct product

$$\Gamma_1 = (\dots (([\Gamma, \Gamma] \rtimes \mathbf{Z}) \rtimes \mathbf{Z}) \rtimes \mathbf{Z})).$$

Set

$$\Delta := (\dots ((H \rtimes \mathbf{Z}) \rtimes \mathbf{Z}) \rtimes \mathbf{Z})).$$

Then Δ is a normal subgroup of finite index of Γ with $\Delta \cap [\Gamma, \Gamma] = H$.

Since $\pi|_H$ is trivial on H and since $[\Delta, \Delta] \subset H$, the restriction $\pi|_{\Delta}$ of π to Δ factorizes through Δ^{Ab} . So, by Proposition 12, there exists a finite Γ -orbit \mathcal{O} in $\widehat{\Delta^{Ab}}$ such that we have a direct sum decomposition $V = \bigoplus_{\chi \in \mathcal{O}} V^{\chi}$, where V^{χ} is the χ -isotypical component of $\pi|_{\Delta}$.

Fix $\chi \in \mathcal{O}$. Since χ is trivial on H and since $\Delta \cap [\Gamma, \Gamma] = H$, we can view χ as a unitary character of the subgroup $\Delta/(\Delta \cap [\Gamma, \Gamma])$ of Γ^{Ab} . Hence, χ extends to a character $\tilde{\chi} \in \widehat{\Gamma^{Ab}}$ (see, e.g. [HR79, (24.12)]). This implies that $\Gamma_{\chi} = \Gamma$; indeed,

$$\chi^{\gamma}(\delta) = \widetilde{\chi}(\gamma^{-1}\delta\gamma) = \widetilde{\chi}(\delta) = \chi(\delta)$$

for every $\gamma \in \Gamma$ and $\delta \in \Delta$. This shows that \mathcal{O} is a singleton and so $V = V^{\chi}$. We write

$$\pi = \widetilde{\chi} \otimes (\widetilde{\chi} \otimes \pi).$$

Then $\rho := \overline{\widetilde{\chi}} \otimes \pi$ is an irreducible unitary representation of Γ which is trivial on Δ ; so, ρ has finite image and $\pi = \widetilde{\chi} \otimes \rho$.

• Third step. Let $\pi \in \widehat{\Gamma}_{fd}$. We claim that there exists a representation $\pi' \in \widehat{K}$ such that $\pi = \pi' \circ \beta$. Once proved, Proposition 5 will imply that (K, β) is a Bohr compactification for Γ .

By the second step, we can write $\pi = \chi \otimes \rho$ for some $\chi \in \widehat{\Gamma}^{Ab}$ and $\rho \in \widehat{\Gamma}_{\text{finite}}$. On the one hand, we can write $\rho = \rho' \circ \alpha$ for some $\rho' \in \widehat{\operatorname{Prof}(\Gamma)}$, by the universal property of $\operatorname{Prof}(\Gamma)$. On the other hand, we can decompose χ as $\chi = \chi_0 \chi_1$ with $\chi_0 \in \widehat{\Gamma}^{Ab}$ of infinite order and $\chi_1 \in \widehat{\Gamma}^{Ab}$ of finite order. We have $\chi_0 = \chi'_0 \circ (p \circ \beta_0)$ and $\chi_1 = \chi'_1 \circ \alpha$ for unitary characters χ'_0 of $\operatorname{Bohr}(\Gamma^{Ab})_0$ and χ'_1 of $\operatorname{Prof}(\Gamma^{Ab})$. For $\pi' = \chi_0 \otimes (\chi'_1 \otimes \rho')$, we have $\pi' \in \widehat{K}$ and $\pi = \pi' \circ \beta$.

4. Proof of Theorems 2

Let $\mathbf{G} = \mathbf{U} \rtimes \mathbf{H}$ be a Levi decomposition of \mathbf{G} and set

$$\Lambda = \mathbf{H}(\mathbf{Z}), \quad \Delta = \mathbf{U}(\mathbf{Z}), \quad \text{and} \quad \Gamma = \Delta \rtimes \Lambda.$$

Denote by $\beta_{\Delta} : \Delta \to \operatorname{Bohr}(\Delta)$ and $\beta_{\Lambda} : \Lambda \to \operatorname{Bohr}(\Lambda)$ the natural homomorphisms. Observe that, by the universal property of $\operatorname{Bohr}(\Delta)$, every element $\lambda \in \Lambda$ defines a continuous automorphism $\theta_b(\lambda)$ of $\operatorname{Bohr}(\Delta)$

19

such that

$$\theta_b(\lambda)(\delta) = \beta_\Delta(\lambda\delta\lambda^{-1}) \quad \text{for all} \quad \delta \in \Delta.$$

The corresponding homomorphism $\theta_b : \Lambda \to \operatorname{Aut}(\operatorname{Bohr}(\Delta))$ defines an action of Λ on $\operatorname{Bohr}(\Delta)$. By Theorem 1, we have

$$Bohr(\Delta) = Bohr(\Delta^{Ab})_0 \times Prof(\Delta).$$

The group Λ acts naturally on Δ^{Ab} and, by duality, on $\widehat{\Delta^{Ab}}$. Let

$$H := \widehat{\Delta^{\operatorname{Ab}}}_{\Lambda - \operatorname{fin}} \subset \widehat{\Delta^{\operatorname{Ab}}}$$

be the subgroup of characters of Δ^{Ab} with finite Λ -orbits. Observe that H contains the torsion subgroup of $\widehat{\Delta^{Ab}}$.

Let

$$\alpha: \Lambda \to \operatorname{Aut}(H)$$

be the homomorphism given by the action of Λ on H.

For a locally compact group G, the group $\operatorname{Aut}(G)$ of continuous automorphisms of G will be endowed with the compact-open topology for which it is also a (not necessarily locally compact) topological group (see [HR79, (26.3)]).

• First step. We claim that the closure of $\alpha(\Lambda)$ in Aut(H) is compact. Indeed, let us identify Aut(H) with a subset of the product space H^H . The topology of Aut(H) coincides with the topology induced by the product topology on H^H . Viewed this way, $\alpha(\Lambda)$ is a subspace of the product $\prod_{\chi \in H} \chi^{\Lambda}$ of the finite Λ -orbits χ^{Λ} . Since $\prod_{\chi \in H} \chi^{\Lambda}$ is compact and hence closed, the claim is proved.

Next, let N be the annihilator of H in Bohr(Δ^{Ab}). Then N is Ainvariant and the induced action of A on Bohr(Δ^{Ab})/N is a quotient of the action given by θ_b .

Let C be the connected component of $\operatorname{Bohr}(\Delta^{\operatorname{Ab}})/N$. Then C coincides with the image of $\operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0$ in $\operatorname{Bohr}(\Delta^{\operatorname{Ab}})/N$ (see [Bou71, Chap. 3, §4, Corollaire 3]) and so

$$C \cong \operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0 / (N \cap \operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0).$$

Since C is invariant under Λ , we obtain an action of Λ on C; let

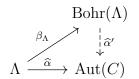
$$\widehat{\alpha} : \Lambda \to \operatorname{Aut}(C)$$

be the corresponding homomorphism.

• Second step. We claim that the action $\hat{\alpha}$ of Λ on C extends to an action of Bohr(Λ); more precisely, there exists a continuous homomorphism

$$\widehat{\alpha}' : \operatorname{Bohr}(\Lambda) \to \operatorname{Aut}(C)$$

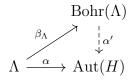
such that the diagram



commutes. Indeed, by the first step, the closure K of $\alpha(\Lambda)$ in Aut(H) is a compact group. Hence, by the universal property of Bohr (Λ) , there exists a continuous homomorphism

$$\alpha': \operatorname{Bohr}(\Lambda) \to K \subset \operatorname{Aut}(H)$$

such that the diagram



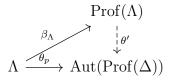
commutes. Since $\widehat{H} = \operatorname{Bohr}(\Delta^{\operatorname{Ab}})/N$, we obtain by duality a continuous homomorphism $\widehat{\alpha}'$: $\operatorname{Bohr}(\Lambda) \to \operatorname{Aut}(\operatorname{Bohr}(\Delta^{\operatorname{Ab}})/N)$. The connected component C of $\operatorname{Bohr}(\Delta^{\operatorname{Ab}})/N$ is invariant under $\operatorname{Bohr}(\Lambda)$. This proves the existence of the map $\widehat{\alpha}'$: $\operatorname{Bohr}(\Lambda) \to \operatorname{Aut}(C)$ with the claimed property.

Next, observe that, by the universal property of $\operatorname{Prof}(\Delta)$, every element $\lambda \in \Lambda$ defines a continuous automorphism $\theta_p(\lambda)$ of $\operatorname{Prof}(\Delta)$ such that

$$\theta_p(\lambda)(\delta) = \beta_\Delta(\lambda\delta\lambda^{-1}) \quad \text{for all} \quad \delta \in \Delta.$$

The corresponding homomorphism $\theta_p : \Lambda \to \operatorname{Aut}(\operatorname{Prof}(\Delta))$ defines an action of Λ on $\operatorname{Prof}(\Delta)$.

• Third step. We claim that the action θ_p of Λ on $\operatorname{Prof}(\Delta)$ extends to an action of $\operatorname{Bohr}(\Lambda)$; more precisely, there exists a homomorphism $\theta' : \operatorname{Bohr}(\Lambda) \to \operatorname{Aut}(\operatorname{Prof}(\Delta))$ such that the diagram



commutes. Indeed, since Δ is finitely generated and since its image in Bohr(Δ) dense, the profinite group Bohr(Δ) is finitely generated (that is, there exists a finite subset of Bohr(Δ) which generates a dense subgroup). This implies that Aut(Bohr(Δ)) is a profinite

group (see [RZ00, Corollary 4.4.4]) and so there exists a homomorphism θ'_p : Prof(Λ) \rightarrow Aut(Prof(Δ)) such that $\theta'_p \circ \alpha_{\Lambda} = \theta_p$. We then lift θ'_p to a homomorphism θ' : Bohr(Λ) \rightarrow Aut(Prof(Δ)).

We set

$$Q := \operatorname{Bohr}(\Delta) / (N \cap \operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0) = C \times \operatorname{Prof}(\Delta);$$

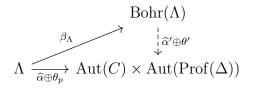
we have an action of Λ on Q given by the homomorphism

$$\widehat{\alpha} \oplus \theta_p : \Lambda \to \operatorname{Aut}(C) \times \operatorname{Aut}(\operatorname{Prof}(\Delta)) \subset \operatorname{Aut}(Q)$$

and, by the second and third step, an action of $Bohr(\Lambda)$ on Q given by

$$\widehat{\alpha}' \oplus \theta' : \operatorname{Bohr}(\Lambda) \to \operatorname{Aut}(C) \times \operatorname{Aut}(\operatorname{Prof}(\Delta))$$

such that the diagram



commutes.

Let

$$B := (C \times \operatorname{Prof}(\Delta)) \rtimes \operatorname{Bohr}(\Lambda)$$

be the semi-direct product defined by $\widehat{\alpha}' \oplus \theta'$. Let

$$p: \operatorname{Bohr}(\Delta) \to C = \operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0 / (N \cap \operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0)$$

be the quotient epimorphism.

• Fourth step. We claim that B, together with the map $\beta : \Gamma \to B$, given by

$$\beta(\delta, \lambda) = (p(\beta_{\Delta}(\delta)), \beta_{\Lambda}(\lambda)) \quad \text{for all} \quad (\delta, \lambda) \in \Gamma,$$

is a Bohr compactification for $\Gamma = \Delta \rtimes \Lambda$.

First, we have to check that β is a homomorphism with dense image. Since $p \circ \beta_{\Delta}$ and β_{Λ} are homomorphisms with dense image, it suffices to show that

$$\beta(\lambda\delta\lambda^{-1}, e) = ((\widehat{\alpha}' \oplus \theta')(\beta_{\Lambda}(\lambda))(p(\beta_{\Delta}(\delta)), e) \quad \text{for all} \quad (\delta, \lambda) \in \Gamma.$$

This is indeed the case: since p is equivariant for the Λ -actions, we have

$$p(\beta_{\Delta}(\lambda\delta\lambda^{-1})) = p(\theta_b(\lambda)\beta_{\Delta}(\delta)) = (\widehat{\alpha}' \oplus \theta')(\beta_{\Lambda}(\lambda))p(\beta_{\Delta}(\delta)).$$

Next, let π be a unitary representation of Γ on a finite dimensional vector space V. By Proposition 5, we have to show that there exists a unitary representation $\tilde{\pi}$ of B on V such that $\pi = \tilde{\pi} \circ \beta$.

Consider a decomposition of $V = V_1 \oplus \cdots \oplus V_s$ into irreducible $\pi(\Delta)$ invariant subspaces V_i ; denote by $\sigma_1, \ldots, \sigma_s$ the corresponding irreducible representations of Δ . By Theorem 1, every σ_i is of the form $\sigma_i = \chi_i \otimes \rho_i$ for some $\chi_i \in \widehat{\Delta^{Ab}}$ and $\rho_i \in \widehat{\Delta}_{\text{finite}}$.

We decompose every χ_i as a product $\chi_i = \chi'_i \chi''_i$ with $\chi'_i \in \widehat{\Delta^{Ab}}$ of finite order and $\chi''_i \in \widehat{\Delta^{Ab}}$ of infinite order. Since χ'_i has finite image, upon replacing ρ_i by $\chi'_i \otimes \rho_i$, we may and will assume that every non trivial χ_i has infinite order.

Fix $i \in \{1, \ldots, s\}$. We can extend χ_i and ρ_i to unitary representations of Bohr(Δ), that is, we can find representations $\tilde{\chi}_i$ and $\tilde{\rho}_i$ of Bohr(Δ) on V_i such that $\chi_i = \tilde{\chi}_i \circ \beta_{\Delta}$ and $\rho_i = \tilde{\rho}_i \circ \beta_{\Delta}$. By Proposition 12, the stabilizer Γ_{σ_i} of σ_i has finite index in Γ . It follows that the Λ -orbit of σ_i is finite, and this implies that $\chi_i \in H$; hence, $\tilde{\chi}_i$ factorizes through

$$C = \operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0 / (N \cap \operatorname{Bohr}(\Delta^{\operatorname{Ab}})_0)$$

and we have $\chi_i = \tilde{\chi}_i \circ (p \circ \beta_{\Delta})$. Since ρ_i has finite image, $\tilde{\rho}_i$ factorizes through $\operatorname{Prof}(\Delta)$. So, $\tilde{\sigma}_i := \tilde{\chi}_i \otimes \tilde{\rho}_i$ is a unitary representation of $C \times \operatorname{Prof}(\Delta)$ on V_i . Set

$$\widetilde{\pi_{\Delta}} := \bigoplus_{i=1}^{s} \widetilde{\sigma_i}$$

Then $\widetilde{\pi_{\Delta}}$ is a unitary representation of $C \times \operatorname{Prof}(\Delta)$ on V such that $\pi|_{\Delta} = \widetilde{\pi_{\Delta}} \circ (\beta|_{\Delta}).$

On the other hand, since $\pi|_{\Lambda}$ is a finite dimensional representation of Λ , we can find a representation $\widetilde{\pi}_{\Lambda}$ of Bohr(Λ) on V such that $\pi|_{\Lambda} = \widetilde{\pi}_{\Lambda} \circ (\beta|_{\Lambda})$. For $\lambda \in \Lambda$ and $\delta \in \Delta$, we have

$$\widetilde{\pi_{\Delta}}(\beta(\lambda)\beta(\delta)\beta(\lambda)^{-1}) = \widetilde{\pi_{\Delta}}(\beta(\lambda\delta\lambda)^{-1}) = \pi(\lambda\delta\lambda)^{-1}) = \pi(\lambda)\pi(\delta)\pi(\lambda)^{-1} = \widetilde{\pi_{\Lambda}}(\beta(\lambda))\widetilde{\pi_{\Delta}}(\beta(\delta))\widetilde{\pi_{\Lambda}}(\beta(\lambda))^{-1}.$$

Since β has dense image in B, it follows that

$$\widetilde{\pi_{\Delta}}(bab^{-1}) = \widetilde{\pi_{\Lambda}}(b)\widetilde{\pi_{\Delta}}(a)\widetilde{\pi_{\Lambda}}(b)^{-1} \quad \text{for all} \quad (a,b) \in B$$

and therefore the formula

$$\widetilde{\pi}(a,b) = \widetilde{\pi}_{\Delta}(a)\widetilde{\pi}_{\Lambda}(b) \quad \text{for all} \quad (a,b) \in B$$

defines a unitary representation of B on V such that $\pi = \tilde{\pi} \circ \beta$.

5. Proof of Theorem 3

Recall that we are assuming that **G** is a connected, simply-connected and almost **Q**-simple algebraic group. The group **G** can be obtained from an absolutely simple algebraic group **H** by the so-called restriction of scalars; more precisely (see [BT65, 6.21, (ii)]), there exists a number field K and an absolutely simple algebraic group **H** over K which is absolutely simple with the following property: **G** can be written as (more precisely, is **Q**-isomorphic to) the **Q**-group $\mathbf{H}^{\sigma_1} \times \cdots \times \mathbf{H}^{\sigma_s}$, where the σ_i 's are the different (non conjugate) embeddings of K in **C**. Assuming that $\sigma_1, \ldots, \sigma_{r_1}$ are the embeddings such that $\sigma_i(K) \subset \mathbf{R}$, we can identify $\mathbf{G}(\mathbf{R})$ with

$$\mathbf{H}^{\sigma_1}(\mathbf{R}) \times \cdots \times \mathbf{H}^{\sigma_{r_1}}(\mathbf{R}) \times \mathbf{H}^{\sigma_{r_1+1}}(\mathbf{C}) \times \cdots \times \mathbf{H}^{\sigma_{r_s}}(\mathbf{C}).$$

Let \mathbf{G}_{c} be the product of the $\mathbf{H}^{\sigma_{i}}$'s for which $\mathbf{H}^{\sigma_{i}}(\mathbf{R})$ is compact.

We assume now that the real semisimple Lie group $\mathbf{G}(\mathbf{R})$ is not locally isomorphic to a group of the form $SO(m, 1) \times L$ or $SU(m, 1) \times L$ for a compact Lie group L. Let $\Gamma \subset \mathbf{G}(\mathbf{Q})$ be an arithmetic subgroup.

Set $K := \mathbf{G}_{c}(\mathbf{R}) \times \operatorname{Prof}(\Gamma)$ and let $\beta : \Gamma \to K$ be defined by $\beta(\gamma) = (p(\gamma), \alpha(\gamma))$, where $p : \mathbf{G}(\mathbf{R}) \to \mathbf{G}_{c}(\mathbf{R})$ is the canonical projection and $\alpha : \Gamma \to \operatorname{Prof}(\Gamma)$ the map associated to $\operatorname{Prof}(\Gamma)$. We claim that (K, β) is a Bohr compactification of Γ ,

First, we show that $\beta(\Gamma)$ has dense image. Observe that $\mathbf{G}_{c}(\mathbf{R})$ is connected (see [Bor91, (24.6.c)]). By the Strong Approximation Theorem (see [PR94, Theorem 7.12]), $p(\mathbf{G}(\mathbf{Z}))$ is dense in $\mathbf{G}_{c}(\mathbf{R})$. Since $\mathbf{G}_{c}(\mathbf{R})$ is connected and since Γ is commensurable to $\mathbf{G}(\mathbf{Z})$, it follows that $p(\Gamma)$ is dense in $\mathbf{G}_{c}(\mathbf{R})$. Now, $\alpha(\Gamma)$ is dense in Prof(Γ) and Prof(Γ) is totally disconnected. As in the first step of the proof of Theorem 1, we conclude that $\beta(\Gamma)$ is dense in K.

Let $\pi : \Gamma \to U(n)$ be a finite dimensional unitary representation of Γ . Then, by Margulis' superrigidity theorem (see [Mar91, Chap. VIII, Theorem B]), [Mor15, Corollary 16.4.1]), there exists a continuous homomorphism $\rho_1 : \mathbf{G}(\mathbf{R}) \to U(n)$ and a homomorphism $\rho_2 : \Gamma \to U(n)$ such that

- (i) $\rho_2(\Gamma)$ is finite;
- (ii) $\rho_1(g)\rho_2(\gamma) = \rho_2(\gamma)\rho_1(g)$ for all $g \in \mathbf{G}(\mathbf{R})$ and $\gamma \in \Gamma$;
- (iii) $\pi(\gamma) = \rho_1(\gamma)\rho_2(\gamma)$ for all $\gamma \in \Gamma$.

By a classical result of Segal and von Neumann [SvN50], ρ_1 factorizes through $\mathbf{G}_{c}(\mathbf{R})$, that is, $\rho_1 = \rho'_1 \circ p$ for a unitary representation ρ'_1 of $\mathbf{G}_{c}(\mathbf{R})$. It follows from (i) that $\rho_2 = \rho'_2 \circ \alpha$ for a unitary representation ρ'_2 of Prof(Γ). Moreover, (ii) and (iii) show that $\pi = (\rho_1|_{\Gamma}) \otimes \rho_2$. Hence,

 $\pi = (\rho'_1 \otimes \rho'_2) \circ \otimes \beta$. We conclude by Proposition 5 that (K, β) is a Bohr compactification of Γ .

6. A FEW EXAMPLES

We compute the Bohr compactification for various examples of arithmetic groups.

(1) For an integer $n \ge 1$, the (2n+1)-dimensional Heisenberg group is the unipotent **Q**-group \mathbf{H}_{2n+1} of matrices of the form

$$m(x_1, \dots, x_n, y_1, \dots, y_n, z) := \begin{pmatrix} 1 & x_1 & \dots & x_n & z \\ 0 & 1 & \dots & 0 & y_1 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & y_n \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

The arithmetic group $\Gamma = \mathbf{H}_{2n+1}(\mathbf{Z})$ is nilpotent of step 2; its commutator subgroup $[\Gamma, \Gamma]$ coincides with its center $\{m(0, 0, z) : z \in \mathbf{Z}\}$. So, $\Gamma^{Ab} \cong \mathbf{Z}^{2n}$. We have, by Theorem 1,

$$\operatorname{Bohr}(\Gamma) \cong \operatorname{Bohr}(\mathbf{Z}^{2n})_0 \times \operatorname{Prof}(\Gamma)$$

and hence, by Proposition 11 and Proposition 16

$$\operatorname{Bohr}(\Gamma) \cong (\prod_{\omega \in \mathfrak{c}} \mathbf{A}/\mathbf{Q}) \times \prod_{p \text{ prime}} \mathbf{H}_{2n+1}(\mathbf{Z}_p)$$

(2) Let $\mathbf{G} = SL_n$ for $n \geq 3$ or $\mathbf{G} = Sp_{2n}$ for $n \geq 2$. Then $SL_n(\mathbf{Z})$ and $Sp_{2n}(\mathbf{Z})$ are non cocompact arithmetic lattices in $SL_n(\mathbf{R})$ and $Sp_{2n}(\mathbf{R})$, respectively. Hence, we have, by Corollary 4, Bohr $(SL_n(\mathbf{Z})) = \operatorname{Prof}(SL_n(\mathbf{Z}))$ and Bohr $(Sp_{2n}(\mathbf{Z})) = \operatorname{Prof}(Sp_{2n}(\mathbf{Z}))$. Since $SL_n(\mathbf{Z})$ and $Sp_{2n}(\mathbf{Z})$ have the congruence subgroup property, it follows that

$$\operatorname{Bohr}(SL_n(\mathbf{Z})) \cong \prod_{p \text{ prime}} SL_n(\mathbf{Z}_p) \cong SL_n(\operatorname{Prof}(\mathbf{Z}))$$

and similarly

$$\operatorname{Bohr}(Sp_{2n}(\mathbf{Z})) \cong \prod_{p \text{ prime}} Sp_{2n}(\mathbf{Z}_p) \cong Sp_{2n}(\operatorname{Prof}(\mathbf{Z})).$$

(3) The group $\Gamma = SL_2(\mathbf{Z}[\sqrt{2}])$ embeds as a non cocompact arithmetic lattice of $SL_2(\mathbf{R}) \times SL_2(\mathbf{R})$. So, by Corollary 4, we have

$$Bohr(SL_2(\mathbf{Z}[\sqrt{2}])) \cong Prof(SL_2(\mathbf{Z}[\sqrt{2}]))$$

Moreover, since Γ has the congruence subgroup property (see [Ser70, Corollaire 3]), it follows that

25

$$\operatorname{Bohr}(SL_2(\mathbf{Z}[\sqrt{2}])) \cong \operatorname{Cong}(SL_2(\mathbf{Z}[\sqrt{2}])).$$

(4) For $n \ge 4$, consider the quadratic form

$$q(x_1, \dots, x_n) = x_1^2 + \dots + x_{n-1}^2 - \sqrt{2}x_n^2 - \sqrt{2}x_{n+1}^2$$

The group $\mathbf{G} = SO(q)$ of unimodular $(n+1) \times (n+1)$ -matrices which preserve q is an almost simple algebraic group over the number field $\mathbf{Q}[\sqrt{2}]$. The subgroup $\Gamma = SO(q, \mathbf{Z}[\sqrt{2}])$ of $\mathbf{Z}[\sqrt{2}]$ rational points in \mathbf{G} embeds as a cocompact lattice of the semisimple real Lie group $SO(n+1) \times SO(n-1,2)$ via the map

$$SO(q, \mathbf{Q}[\sqrt{2}]) \to SO(n+1) \times SO(n-1, 2), \ \gamma \mapsto (\gamma^{\sigma}, \gamma),$$

where σ is the field automorphism of $\mathbf{Q}[\sqrt{2}]$ given by $\sigma(\sqrt{2}) = -\sqrt{2}$; so, $SO(n+1) \times SO(n-1,2)$ is the group of real points of the **Q**-group $R_{\mathbf{Q}[\sqrt{2}]/\mathbf{Q}}(\mathbf{G})$ obtained by restriction of scalars from the $\mathbf{Q}[\sqrt{2}]$ -group **G**. Observe that $R_{\mathbf{Q}[\sqrt{2}]/\mathbf{Q}}(\mathbf{G})$ is almost $\mathbf{Q}[\sqrt{2}]$ -simple since **G** is almost **Q**-simple. By Theorem 3, we have

 $\operatorname{Bohr}(SO(q, \mathbf{Z}[\sqrt{2}])) \cong SO(n+1) \times \operatorname{Prof}(SO(q, \mathbf{Z}[\sqrt{2}]).$

(5) For $d \geq 2$, let D be a central division algebra over \mathbf{Q} such that $D \otimes_{\mathbf{Q}} \mathbf{R}$ is isomorphic to the algebra $M_d(\mathbf{R})$ of real $d \times d$ -matrices. There exists a subring \mathcal{O} of D which is a \mathbf{Z} -lattice in D (a so-called order in D). There is an embedding $\varphi : D \to M_d(\mathbf{R})$ such that $\varphi(SL_1(D) \subset SL_d(\mathbf{Q})$ and such that $\Gamma := \varphi(SL_1(\mathcal{O}) \text{ is an arithmetic cocompact lattice in } SL_d(\mathbf{R})$, where $SL_1(D)$ is the group of norm one elements in D; for all this, see [Mor15, §6.8.i]. For $d \geq 3$, we have

$$\operatorname{Bohr}(\Gamma) \cong \operatorname{Prof}(\Gamma).$$

So, this is an example of a *cocompact* lattice Γ in a simple real Lie group for which there exists no homomorphism $\Gamma \rightarrow U(n)$ with infinite image; the existence of such examples was mentioned in [Mor15, (16.4.3)]

(6) For $n \geq 2$, let Γ be the semi-direct product $\mathbf{Z}^n \rtimes SL_n(\mathbf{Z})$, induced by the usual linear action of $SL_n(\mathbf{Z})$ on \mathbf{R}^n . The dual action of $SL_n(\mathbf{Z})$ on $\widehat{\mathbf{Z}^n} \cong \mathbf{R}^n/\mathbf{Z}^n$ is given by

$$SL_n(\mathbf{Z}) \times \mathbf{R}^n / \mathbf{Z}^n \to \mathbf{R}^n / \mathbf{Z}^n, (g, x + \mathbf{Z}^n) \mapsto {}^tgx + \mathbf{Z}^n.$$

It is well-known and easy to show that the subgroup of $SL_n(\mathbf{Z})$ periodic orbits in $\widehat{\mathbf{Z}}^n$ corresponds to $\mathbf{Q}^n/\mathbf{Z}^n$, that is, to the characters of finite image. It follows from Theorem 2 that

$$\operatorname{Bohr}(\mathbf{Z}^n \rtimes SL_n(\mathbf{Z})) \cong \operatorname{Bohr}(SL_n(\mathbf{Z}))_0 \times \operatorname{Prof}(\mathbf{Z}^n \rtimes SL_n(\mathbf{Z})).$$

For $n \geq 3$, we have therefore

$$\operatorname{Bohr}(\mathbf{Z}^n \rtimes SL_n(\mathbf{Z})) \cong \operatorname{Prof}(\mathbf{Z}^n \rtimes SL_n(\mathbf{Z})) \cong \prod_{p \text{ prime}} \mathbf{Z}_p \rtimes SL_n(\mathbf{Z}_p).$$

References

- [AK43] Hirotada Anzai and Shizuo Kakutani, Bohr compactifications of a locally compact Abelian group. I, Proc. Imp. Acad. Tokyo 19 (1943), 476–480. [↑]2
- [BMS67] H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for SL_n ($n \geq 3$) and Sp_{2n} ($n \geq 2$), Inst. Hautes Études Sci. Publ. Math. **33** (1967), 59–137. ↑5
- [BHV08] B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. ↑10
- [BH] B. Bekka and P. de la Harpe, Unitary representations of groups, duals, and characters, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI. ↑2, 7, 9, 10, 11
- [Boh25a] H. Bohr, Zur Theorie der fast periodischen Funktionen, Acta Math. 45 (1925), no. 1, 29–127 (German). [↑]2
- [Boh25b] Harald Bohr, Zur Theorie der Fastperiodischen Funktionen, Acta Math. 46 (1925), no. 1-2, 101–214 (German). ↑2
- [Bor91] A. Borel, Linear algebraic groups, Second, Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. ↑4, 23
- [Bor63] _____, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math. 16 (1963), 5–30. ↑16
- [BT65] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150. ↑23
- [BHC62] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. ↑3, 4, 5, 16
- [Bou71] N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971. ↑17, 19
- [Che51] C. Chevalley, Deux théorèmes d'arithmétique, J. Math. Soc. Japan 3 (1951), 36–44 (French). ↑5
- [Dix77] J. Dixmier, C^{*}-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. [↑]2
- [DK18] C. Druţu and M. Kapovich, Geometric group theory, American Mathematical Society Colloquium Publications, vol. 63, American Mathematical Society, Providence, RI, 2018. ↑15
- [FH06] J. Franks and M. Handel, Distortion elements in group actions on surfaces, Duke Math. J. 131 (2006), no. 3, 441–468. ↑13
- [GS91] S. M. Gersten and H. B. Short, Rational subgroups of biautomatic groups, Ann. of Math. (2) 134 (1991), no. 1, 125–158. ↑13

- [BGS85] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. ↑13, 15
- [HK01] J. E. Hart and K. Kunen, Bohr compactifications of non-abelian groups, Proceedings of the 16th Summer Conference on General Topology and its Applications (New York), 2001/02, pp. 593–626. ↑2, 10
- [HR79] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Vol. 115, Springer-Verlag, Berlin-New York, 1979. [↑]12, 18, 19
- [Hol64] P. Holm, On the Bohr compactification, Math. Ann. 156 (1964), 34-46. $\uparrow 2$
- [LMR00] A. Lubotzky, S. Mozes, and M. S. Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 5–53 (2001). ↑14
- [Mar91] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Springer-Verlag, Berlin, 1991. MR1090825 ↑23
- [Mos56] G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200–221. ↑3
- [vN34] J. v. Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. 36 (1934), no. 3, 445–492. MR1501752 ↑2
- [PR94] V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. ↑5, 23
- [Rag76] M. S. Raghunathan, On the congruence subgroup problem, Inst. Hautes Études Sci. Publ. Math. 46 (1976), 107–161. ↑5, 16
- [Rag72] _____, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, 1972. ↑2, 17
- [RZ00] L. Ribes and P. Zalesskii, Profinite groups, Vol. 40, Springer-Verlag, Berlin, 2000. ↑2, 21
- [SvN50] I. E. Segal and J. von Neumann, A theorem on unitary representations of semisimple Lie groups, Ann. of Math. (2) 52 (1950), 509–517. ↑23
- [Ser70] J.-P. Serre, Le problème des groupes de congruence pour SL2, Ann. of Math.
 (2) 92 (1970), 489–527 (French). ↑25
- [Tit72] J. Tits, Free subgroups in linear groups, J. Algebra **20** (1972), 250–270. ↑14
- [Tit81] Jacques Tits, Groupes à croissance polynomiale (d'après M. Gromov et al.), Bourbaki Seminar, Vol. 1980/81, Lecture Notes in Math., vol. 901, Springer, Berlin-New York, 1981, pp. 176–188. ↑15
- [Weh73] B. A. F. Wehrfritz, Infinite linear groups. An account of the grouptheoretic properties of infinite groups of matrices, Springer-Verlag, New York-Heidelberg, 1973. ↑17
- [Wei40] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann & Cie, Paris, 1940. ↑2
- [Mor15] D. Witte Morris, Introduction to arithmetic groups, Deductive Press, 2015. ↑5, 23, 25

BACHIR BEKKA, UNIV RENNES, CNRS, IRMAR–UMR 6625, CAMPUS BEAULIEU, F-35042 RENNES CEDEX, FRANCE

Email address: bachir.bekka@univ-rennes1.fr