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Abstract

For n ≥ 3, let Γ = SLn(Z). We prove the following superridigity
result for Γ in the context of operator algebras. Let L(Γ) be the von
Neumann algebra generated by the left regular representation of Γ.
Let M be a finite factor and let U(M) be its unitary group. Let
π : Γ → U(M) be a group homomorphism such that π(Γ)′′ = M.
Then either

(i) M is finite dimensional, or

(ii) there exists a subgroup of finite index Λ of Γ such that π|Λ
extends to a homomorphism U(L(Λ)) → U(M).

This answers, in the special case of SLn(Z), a question of A. Connes
discussed in [Jone00, Page 86]. The result is deduced from a complete
description of the tracial states on the full C∗–algebra of Γ.

As another application, we show that the full C∗–algebra of Γ has
no faithful tracial state, thus answering a question of E. Kirchberg.

1 Introduction

Two major achievements in the study of discrete subgroups in semi-simple Lie
groups are Mostow’s ridigity theorem and Margulis’ superrigidity theorem.
A weak version of the latter is as follows. Let Γ be a lattice in a simple
real Lie group G with finite centre and with R − rank(G) ≥ 2. Let H be
another simple real Lie group with finite centre, and let π : Γ → H be
a homomorphism such that π(Γ) is Zariski-dense in H. Then, either H is
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compact or there exists a finite index subgroup Λ of Γ such that π|Λ extends to
a continuous homomorphism G→ H. For more general results, see [Marg91]
and [Zimm84]. Moreover, as shown by Corlette, the superridity theorem
continues to hold for the simple real Lie groups G with R − rank(G) = 1
which are not locally isomorphic to SO(n, 1) or SU(n, 1).

In the theory of von Neumann algebras, discrete groups (as well as their
actions) always played a prominent rôle. To a discrete group Γ is associated a
distinguished von Neumann algebra L(Γ), namely the von Neumann algebra
generated by the left regular representation λΓ of Γ; thus, L(Γ) is the closure
for the strong operator topology of the linear span of {λΓ(γ) : γ ∈ Γ} in
the algebra L(`2(Γ)) of all bounded operators on the Hilbert space `2(Γ).

The first rigidity result in the context of operator algebras is the result
by A. Connes [Conn80] showing that, for a group Γ with Kazhdan’s Prop-
erty (T), the group of outer automorphisms of L(Γ) is countable. A major
problem in this area is whether such a group Γ can be reconstructed from
its von Neumann algebra L(Γ). In recent years, a series of remarkable results
concerning this question, with applications to ergodic theory, have been ob-
tained by S. Popa ([Popa06-a], [Popa06-b]; for an account, see [Vaes06]).
Other relevant work includes [CoHa89] and [Furm99].

The purpose of this paper is to discuss another kind of rigidity, namely
the rigidity of a discrete group in the unitary group of its von Neumann
algebra. If Γ is a discrete group, we view Γ as a subgroup of the unitary
group U(L(Γ)) of L(Γ), that is, the group of the unitary operators in L(Γ).
It was suggested by Connes (see [Jone00, Page 86]) that, for Γ as in the
statement of Margulis’ theorem, a superrigity result should hold in which G
above is replaced by U(L(Γ)) and H by the unitary group U(M) of a type
II1 factor. We prove such a superrigity result in the case Γ = SLn(Z) for
n ≥ 3.

Recall that a von Neumann algebra M is a factor if the centre of M is
reduced to the scalar operators. The von Neumann algebra M is said to be
finite if there exists a finite normal faithful trace on M. A finite factor is
a type II1 factor which is infinite dimensional. Recall also that L(Γ) is a
finite von Neumann algebra. Moreover, L(Γ) is a factor if and only if Γ is an
ICC-group, that is, if all its conjugacy classes, except {e}, are infinite. For
an account on the theory of von Neumann algebras, see [Dix-vN].

Theorem 1 Let Γ = SLn(Z) for n ≥ 3. Let M be a finite factor and let
U(M) its unitary group. Let π : Γ → U(M) be a group homomorphism.
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Assume that the linear span of π(Γ) in dense in M for the strong operator
topology. Then either

(i) M is finite dimensional, that is, M is isomorphic to a matrix algebra
Mn(C) for some n ∈ N, in which case π factorizes to a multiple of an
irreducible representation of some congruence quotient SLn(Z/NZ) for
N ∈ N, or

(ii) there exists a subgroup of finite index Λ of Γ such that π|Λ extends to
a normal homomorphism L(Λ) → M of von Neumann algebras. In
particular, π|Λ extends to a group homomorphism U(L(Λ)) → U(M).

Let C be the centre of SLn(Z). Observe that C is trivial for odd n and
C = {±I} for even n. If, in the statement of the theorem above, we take
instead Γ = PSLn(Z) = SLn(Z)/C, then L(Γ) is a factor and the conclusion
(ii) holds for Λ = Γ.

The method of proof of Theorem 1 can be adapted to establish the same
result when Γ is the symplectic group Sp2n(Z) for n ≥ 2; it works presumably
for the group of integral points of any Chevalley group of rank ≥ 2. No such
result can be true for the modular group SL2(Z); see Remark 4 below.

Remark 2 (i) Let Γ be a countable ICC–group with Kazhdan’s Property
(T). It was shown in [CoJo85] that L(Γ) cannot be a subfactor of L(F2), where
F2 is a non-abelian free group. This, combined with Theorem 1, shows that
every representation of PSLn(Z) for n ≥ 3 into U(L(F2)) decomposes as a
direct sum of finite dimensional representations. This is a special case of a
result of G. Robertson [Robe93] valid for all groups with Property (T). For
a related work, see [Vale97].
(ii) Let M be a finite factor. The unitary group U(M) has as centre a copy
of the circle group S1, namely the unitary scalar operators. It was shown in
[Harp79] that the projective unitary group U(M)/S1 of M is a simple group.

The result in Theorem 1 amounts to the classification of the characters
of Γ (see Section 7), that is, the functions ϕ : Γ → C with the following
properties:

• ϕ is central, that is, ϕ(γxγ−1) = ϕ(x) for all γ, x ∈ Γ,

• ϕ is positive definite, that is,
∑n

i=1 cjciϕ(γ−1
j γi) ≥ 0 for all γ1, . . . , γn ∈

Γ and c1, . . . , cn ∈ C,
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• ϕ is normalized, that is, ϕ(e) = 1,

• ϕ is indecomposable, that is, ϕ cannot be written in a non-trivial way
as a convex combination of two central positive definite normalized
functions.

There are two obvious examples of characters of a group Γ. First of all,
the normalized character (in the usual sense) of an irreducible finite dimen-
sional unitary representations of Γ is a character of Γ in the above sense.
For Γ = SLn(Z), n ≥ 3, it is well–known that every such representation
factorizes through some congruence quotient SLn(Z/NZ) for an integer N ;
this a consequence of the solution of the congruence subgroup problem (see
[BaMS67], [Menn65]; see also [Stei85]). Much is known about the characters
of the finite groups SLn(Z/NZ); see [Zele81].

Let C be the centre of the group Γ. Assume that all conjugacy classes,
except those of the elements from C, are infinite. Then, for every unitary
character χ of the abelian group C, the trivial extension χ̃ of χ to Γ, defined
by χ̃ = 0 on Γ \C, is a character of Γ. In particular, if Γ is ICC, then δe, the
Dirac function at e, is a character of Γ. When n is even, all conjugacy classes
of PSLn(Z), except {I} and {−I}, are infinite.

Our main result says that SLn(Z) for n ≥ 3 has no characters other than
the obvious ones described above.

Theorem 3 Let ϕ be a character of SLn(Z) for n ≥ 3. Then, either

(i) ϕ is the character of an irreducible finite dimensional representation of
some congruence quotient SLn(Z/NZ) for N ≥ 1, or

(ii) ϕ is the trivial extension χ̃ of a character χ of the centre of SLn(Z)..

Remark 4 No classification of the characters of the modular group SL2(Z)
can be expected. Indeed, this group contains the free non-abelian group
F2 on two generators as normal subgroup. Every character of F2 extends
to a character on SL2(Z). Now, F2 has a huge number of characters: if
M is any finite factor with trace τ, every pair of unitaries in M defines a
homomorphism π : F2 → U(M) and a corresponding character τ ◦ π on F2.

The problem of the description of the characters of a discrete group
Γ has been considered by several authors. E. Thoma [Thom64b] solved
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this problem for the infinite symmetric group S∞ (see also [VerKe81]), H -
L. Skudlarek [Skud76] for the group Γ = GL(∞,F), where F is a finite field,
and D. Voiculescu [Voic76] for Γ = U(∞); see also [StVo75] and [Boye83].
A.A. Kirillov [Kiri65] described the characters of Γ = GLn(K) or SLn(K) for
n ≥ 2, where K is an infinite field (see also [Rose89] and [Ovci71]).

Our proof of Theorem 3 is based on an analysis of the restriction ϕ|V of
a given character ϕ of SLn(Z) to various copies V of Zn−1. We will see that
we have a dichotomy corresponding to the two different types of characters
from Theorem 3: either the measure on the torus Tn−1 associated to ϕ|V is
atomic or this measure is the Lebesgue measure for every V. An important
ingredient in our analysis is the solution of the congruence subgroup for
SLn(Z) for n ≥ 3.

The result of Theorem 3 can be interpreted as a classification of the traces
on the full C∗-algebra C∗(Γ) of Γ = SLn(Z) for n ≥ 3 (see Section 2).

E. Kirchberg asked in [Kirc93, Remark 8.2, page 487] whether the full
C∗–algebra of SL4(Z) has a faithful trace. He was motivated by the fact
that a positive answer to this question would imply a series of outstanding
conjectures in the theory of von Neumann algebras (see Section 8). As a
consequence of Theorem 3, we will see that the answer to Kirchberg’s question
is negative, namely:

Corollary 5 The full C∗–algebra of SLn(Z) has no faithful tracial state for
n ≥ 3.

In fact, we will prove the stronger result Corollary 19 below.
Recall that the reduced C∗-algebra C∗r (Γ) of a group Γ is the closure of the

linear span of {λΓ(γ) : γ ∈ Γ} in L(`2(Γ)) for the operator norm. Recall also
that δe factorizes to a faithful tracial state on C∗r (Γ). The finite dimensional
representations of PSLn(Z) do not factorize through C∗r (PSLn(Z)), since
PSLn(Z) is not amenable. As a consequence, Theorem 3 implies that δe is
the unique tracial state on C∗r (PSLn(Z)). This also follows from [BeCH95],
where a different method is used.

Theorem 3 leaves open the problem of existence of infinite, semi-finite
traces on C∗(SLn(Z)). We do not know whether such traces exist. Using
[BeCH95], we can only show that no such trace exists on C∗r (PSLn(Z)). In
fact, this result is valid for a more general class of groups including PSL2(Z)
(see Proposition 21 below).

This paper is organized as follows. Sections 2 and 3 are devoted to
some general facts. The proof of Theorem 3 is spread over three sections: in
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Section 4, we show that the proof splits into two cases which are then treated
accordingly in Sections 5 and 6. In Section 7, we show that Theorem 1 is a
consequence of Theorem 3. Corollary 5 is proved in Section 8 and Section 9
is devoted to a remark on the problem of the existence of infinite traces.

Acknowlegments We are grateful to S. Popa who pointed out to us Connes’
question from [Jone00] and suggested to emphasize the superrigidity result
Theorem 1. Thanks are also due to E. Blanchard, E. Kirchberg, and P. de
la Harpe, for interesting comments.

2 Factor representations and characters

We review some general facts concerning the relationships between central
positive definite functions on groups and factor representations. Details can
be found in [Dix-C*, Chapters 6 and 17] or [Thom64a].

Let Γ be a discrete group. We are interested in representations of Γ in
the unitary group of a finite von Neumann algebra.

Recall that a finite trace or a tracial state on a C∗–algebra A with unit 1
is a linear functional τ on A which has the property

τ(xy) = τ(yx) for all x, y ∈ A,

which is positive (that is, τ(x∗x) ≥ 0 for all x ∈ A), and which is normalized
by τ(1) = 1. The trace τ is faithful if τ(x∗x) 6= 0 for all x 6= 0.

Let M be a finite von Neumann algebra, with faithful trace normal τ. Let
π : Γ → U(M) be a group homomorphism. The function ϕ = τ ◦ π : Γ → C
has the following properties:

(i) ϕ is central;

(ii) ϕ is positive definite;

(iii) ϕ(e) = 1.

Let CP (Γ) denote the set of functions ϕ : Γ → C with Properties (i), (ii)
and (iii) above.

Ley ϕ ∈ CP (Γ). Then there exist a finite von Neumann algebra Mϕ, with
faithful normal trace τϕ, and a group homomorphism πϕ : Γ → U(Mϕ) such
that ϕ = τϕ ◦ πϕ. Indeed, by GNS–construction, there exists a cyclic unitary

6



representation πϕ of Γ on a Hilbert space Hϕ with a cyclic unit vector ξϕ
such that

ϕ(γ) = 〈πϕ(γ)ξϕ, ξϕ〉 for all γ ∈ Γ.

Since ϕ is central, there exists another unitary representation ρϕ of Γ on Hϕ

which commutes with πϕ (that is, πϕ(γ)ρϕ(γ′) = ρϕ(γ′)πϕ(γ) for all γ, γ′ ∈ Γ)
and with the property that

ρϕ(γ)ξϕ = πϕ(γ−1)ξϕ for all γ ∈ Γ.

Let Mϕ = πϕ(Γ)′′ be the von Neumann subalgebra of L(Hϕ) generated by
πϕ(Γ), where S ′ = {T ∈ L(Hϕ) : TS = ST for all S ∈ S} denotes the
commutant of a subset S of L(Hϕ). The mapping

T 7→ 〈Tξϕ, ξϕ〉 for all T ∈Mϕ

is a faithful normal trace τϕ on Mϕ and ϕ = τϕ ◦ πϕ.
Moreover, if Nϕ = ρϕ(Γ)′′ is the von Neumann subalgebra of L(Hϕ)

generated by ρϕ(Γ), then

M ′
ϕ = Nϕ and N ′

ϕ = Mϕ.

In particular, the common centre of Mϕ and Nϕ is Mϕ ∩Nϕ.
As an important example, let ϕ = δe be the Dirac function at the group

unit e. Then ϕ ∈ CP (Γ). The unitary representations πϕ and ρϕ associated to
ϕ are the left and right regular representations λΓ and ρΓ on `2(Γ). Morever,
Mϕ is the von Neumann algebra L(Γ) of Γ.

The set CP (Γ) is a compact and convex subset of the vector space of
all bounded functions on Γ, equipped with the weak *-topology. The set
of extremal points E(Γ) of CP (Γ) is the set of all indecomposable central
positive definite functions on Γ. By Choquet theory, every ϕ ∈ CP (Γ) may
be written as a integral

ϕ =

∫

E(Γ)

ψdµ(ψ)

for a probability measure µ on E(Γ), at least when G is countable. For
ϕ ∈ CP (Γ), we have that Mϕ is a factor if and only if ϕ ∈ E(Γ). As an
example, the Dirac function δe belongs to E(Γ) if and only if Γ is an ICC
group.

Let M be a finite von Neumann algebra, with faithful normal trace τ,
and let π : Γ → U(M) be a homomophism such that π(Γ)′′ = M. Observe
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that, if we set ϕ = τ ◦ π ∈ CP (Γ), then, with the notation above, the map-
ping πϕ(γ) 7→ π(γ) extends to an isomorphism Mϕ → M of von Neumann
algebras.

A homomorphism π : Γ → U(M) for a finite factor M such that π(Γ)′′ =
M will be called a finite factor representation of Γ. We say that two such
representations π1 : Γ → U(M1) and π2 : Γ → U(M2) are quasi-equivalent if
there exists an isomorphism Φ : M1 → M2 such that Φ(π1(γ)) = π2(γ) for
all γ ∈ Γ. Summarizing the discussion above, we see that E(Γ) classifies the
finite factor representations of Γ, up to quasi-equivalence.

The set E(Γ) parametrizes also the indecomposable traces on the full C∗-
algebra of Γ. Recall that the full C∗-algebra C∗(Γ) of Γ is the C∗-algebra with
the universal property that every unitary representation of Γ on a Hilbert
space H extends to a ∗–homomorphism C∗(Γ) → L(H). The algebra C∗(Γ)
can be realized as completion of the group algebra C[Γ] under the norm

∥∥∥∥∥
∑
γ∈Γ

cγγ

∥∥∥∥∥ = sup

{∥∥∥∥∥
∑
γ∈Γ

cγπ(γ)

∥∥∥∥∥ : π ∈ Rep(Γ)

}
,

where Rep(Γ) denotes the set of (equivalence classes of) cyclic unitary rep-
resentations of Γ.

We will view Γ as a subgroup of the group of unitaries in C∗(Γ) by means
of the canonical embedding Γ → C∗(Γ). Every trace on C∗(Γ) defines by
restriction to Γ an element of CP (Γ). Conversely, every ϕ ∈ CP (Γ) extends
to a trace on C∗(Γ), since, as seen above, ϕ(γ) = 〈πϕ(γ)ξϕ, ξϕ〉 and πϕ is a
unitary representation of Γ.

3 Some subgroups of SLn(Z)

Let n is a fixed integer with n ≥ 2. For a pair of integers (i, j) with 1 ≤
i 6= j ≤ n, denote by eij the corresponding elementary matrix, that is, the
(n×n)-matrix with 1’s on the diagonal, 1 at the (i, j)-entry, and 0 elsewhere.
It is well-known that SLn(Z) is generated by

{eij : 1 ≤ i 6= j ≤ n}.
Moreover, for n ≥ 3, any two elementary matrices are conjugate inside
SLn(Z). Indeed, observe that the matrix

sij = eije
−1
ji eij ∈ SLn(Z)
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permutes the i-th and the j-th standard unit vectors of Zn, up to a sign.
Hence, if ekl and epq are two elementary matrices, conjugation by a suitable
product of matrices of the form sij will carry ekl into epq or e−1

pq . Now, epq and
e−1

pq are conjugate via a suitable diagonal matrix in SLn(Z), when n ≥ 3.
The proof of the following two lemmas is by straightforward computation.

We will always view an element a ∈ Zn as column vector. Its transpose at is
then a row vector. We denote by e1, . . . , en the standard unit vectors in Zn.

Lemma 6 Let k be a non-zero integer and let i, j ∈ {1, . . . , n} with 1 ≤ i 6=
j ≤ n. The centralizer of ek

ij in SLn(Z) consists of all matrices with εei as
i-th column and εet

j as j-th row for ε ∈ {±1}. ¥

For instance, the centralizer of ek
12 is the subgroup of all matrices of the form




ε ∗ ∗ · · · ∗
0 ε 0 . . . 0
0 ∗ ∗ · · · ∗

...
...

. . .

0 ∗ ∗ ∗ ∗



,

for ε ∈ {±1}.
For j ∈ {1, . . . , n}, let Vj

∼= Zn−1 be the subgroup generated by

{eij : 1 ≤ i ≤ n, i 6= j};
for instance, V1 is the set of matrices of the form




1 0 . . . 0
∗ 1 . . . 0
...

. . .

∗ 0 . . . 1


 .

Lemma 7 The normalizer of Vj in SLn(Z) is the subgroup Gj of all matrices
in SLn(Z) with εej as j-th row for ε ∈ {±1}.¥

Thus, for instance, the normalizer G1 of V1 is the group of all matrices



ε 0 · · · 0
∗
... A
∗


 ,
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where A ∈ GLn−1(Z) and ε = detA.
Up to a subgroup of index two, Gj is isomorphic to the semi-direct product

SLn−1(Z)n Zn−1 for the natural action of SLn−1(Z) on Zn−1.
We will have also to consider the transpose subgroups V t

i generated by

{eij : 1 ≤ j ≤ n, j 6= i}.
Observe that Vj∩V t

i is the copy of Z generated by eij for i 6= j. The normalizer
of V t

i in SLn(Z) is of course the group Gt
i. Observe also that

Vj ⊂ Gt
i and V t

i ⊂ Gj

for all i 6= j.
We will refer to subgroups of the form Vj and V t

i as to the copies of Zn−1

inside SLn(Z).

4 Proof of Theorem 3: A preliminary reduc-

tion

The starting point of the proof of Theorem 3 is the following classification
from [Burg91, Proposition 9] of the measures on the n-dimensional torus Tn

which are invariant under the natural action of SLn(Z); for a more elementary
proof in the case n = 2, see [DaKe79].

Lemma 8 ([Bur]) Let n ≥ 2 be an integer. Let µ be a SLn(Z)–invariant
ergodic probability measure on the Borel subsets of Tn. Then either µ is
concentated on a finite SLn(Z)–orbit or µ is the normalized Lebesgue measure
on Tn.

Recall that a point x ∈ Tn = Rn/Zn has a finite SLn(Z)–orbit if and only if
x ∈ Qn/Zn.

Let n ≥ 3 and let
ϕ : SLn(Z) → C

be an indecomposable central positive definite function on SLn(Z), fixed
throughout the proof.

As in Section 2, let π and ρ be the corresponding commuting factor
representations of Γ on the Hibert space H with cyclic vector ξ such that

ϕ(γ) = 〈π(γ)ξ, ξ〉 = 〈ρ(γ−1)ξ, ξ〉, for all γ ∈ Γ.
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Fix any copy V = Vj or V = V t
j of Zn−1 inside SLn(Z) and consider the

restriction ϕ
∣∣
V

to V .

As ϕ is central, ϕ
∣∣
V

is a G–invariant positive definite function on V , where

G = Gj or G = Gt
j

is the normalizer of V in SLn(Z). Since G contains a copy of the semi-direct
product SLn−1(Z) n Zn−1 (for the usual action in case V = Vj and for the
inverse transpose of the usual action in case V = V t

j ), we have

ϕ(Ax) = ϕ(x) for all x ∈ Zn−1, A ∈ SLn−1(Z).

Thus, by Bochner’s theorem, ϕ
∣∣
V

is the Fourier transform of a SLn−1(Z)–
invariant probability measure on the torus

Tn−1 ∼= V̂ .

Let (Oi)i≥1 denote the sequence of finite SLn−1(Z)–orbits in Tn−1. For each
i ≥ 1, denote by µOi

the uniform distribution on Oi, that is, the probability
measure

µOi
=

1

|Oi|
∑
χ∈Oi

δχ

on Tn−1. Lemma 8 shows that µ has a decomposition as a convex combination

µ = t(V )
∞ µ∞ +

∑
i≥1

t
(V )
i µOi

with t(V )
∞ +

∑
i≥1

t
(V )
i = 1, t(V )

∞ ≥ 0, t
(V )
i ≥ 0,

where µ∞ is the normalized Lebesgue measure on Tn−1. Thus, we obtain a
corresponding decomposition of ϕ

∣∣
V

ϕ
∣∣
V

= t(V )
∞ δe +

∑
i≥1

t
(V )
i ψOi

with t(V )
∞ +

∑
i≥1

t
(V )
i = 1, t(V )

∞ ≥ 0, t
(V )
i ≥ 0,

where ψOi
is the Fourier transform of the measure µOi

.
By general theory, we have a corresponding decomposition of H into a

direct sum of π(V )–invariant subspaces

H = HV
∞ ⊕

⊕

χ∈Qn−1/Zn−1

HV
χ
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where HV
χ is the subspace on which V acts according to the character χ, that

is,
HV

χ = {η ∈ H π(v)η = χ(v)η for all v ∈ V }
and where HV

∞ is a subspace on which π(V ) is a multiple of the regular
representation λV of V. Observe that some of these subspaces may be {0}.
Observe also that, since the representation ρ commutes with π, each of the
subspaces HV

χ and HV
∞ is invariant under the whole of ρ(SLn(Z)).

We claim that we have the following dichotomy.

Lemma 9 We have

• either H =
⊕

χ∈Qn−1/Zn−1 HV
χ for every copy V of Zn−1 in SLn(Z), or

• H = HV
∞ for every copy V of Zn−1 in SLn(Z).

Proof Let V be a copy of Zn−1 with HV
∞ 6= {0}. We will show that

H = HW
∞ for every copy W of Zn−1 in SLn(Z).

Clearly, this will prove the lemma.
• First step: Let W be a copy of Zn−1 for which we assume that V ∩W 6= {0}.
We claim that HV

∞ = HW
∞ .

Indeed, V ∩W is the copy of Z generated by the appropriate elementary
matrix. We have two decompositions of H :

H = HV
∞ ⊕

⊕

χ∈Qn−1/Zn−1

HV
χ and H = HW

∞ ⊕
⊕

χ∈Qn−1/Zn−1

HW
χ .

Consider the restriction of π to V ∩W. Each one of the subspaces

⊕

χ∈Qn−1/Zn−1

HV
χ and

⊕

χ∈Qn−1/Zn−1

HW
χ

has a decomposition into a direct sum of subspaces under which π(V ∩W )
acts according to a character of V ∩W.

On the other hand, the representation π|V ∩W restricted to HV
∞ or to HW

∞
is a multiple of the regular representation λV ∩W , since λV |V ∩W and λw|V ∩W

are mutiples of λV ∩W . It follows that we necessarily have HV
∞ = HW

∞ .
• Second step: Let W be now an arbitrary copy of Zn−1. We claim that we
still have HV

∞ = HW
∞ .
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Indeed, as is readily verified, we can find two copies W 1 and W 2 of Zn−1

with

V ∩W 1 6= {0}, W 1 ∩W 2 6= {0}, and W 2 ∩W 6= {0}.

Therefore, by the first step, we have

HV
∞ = HW 1

∞ , HW 1

∞ = HW 2

∞ HW 2

∞ = HW
∞ ,

so that HV
∞ = HW

∞ .
• Third step: We claim that HV

∞ = H.
Indeed, by the second step, we have

HV
∞ = HW

∞ for every copy W of Zn−1 in SLn(Z)..

Since HW
∞ is invariant under π(W ), it follows that HV

∞ is invariant under
π(SLn(Z)).

On the other hand, HV
∞ is also invariant under ρ(SLn(Z)). Since π is a

factor representation and since HV
∞ 6= {0}, the claim follows. ¥

We have to consider separately the two possible decompositions of H
given by the previous lemma. We will see that the first one corresponds to a
character of a congruence quotient, and that the second one to a character
induced from the centre.

5 Proof of Theorem 3: First case

With the notation from the last section, we assume in this section that

H =
⊕

χ∈Qn−1/Zn−1

HV
χ for every copy V of Zn−1 in SLn(Z).

We claim that there exists some integer N ≥ 1 such that π is trivial on the
congruence normal subgroup

Γ(N) = {γ ∈ SLn(Z) : γ ≡ I mod N}.

Let γ0, γ1, . . . , γd denote the elementary matrices in SLn(Z), where d =
n(n− 1)− 1.
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For every k ∈ {0, . . . , d}, we have a decomposition

H =
⊕

α∈Q/Z
Hγk

α

of H under the action of the unitary operator π(γk), where Hγk
α is the

eigenspace (possibly equal to {0}) of π(γk) corresponding to α.

Lemma 10 There exists an integer N ≥ 1 such that π(γN
0 ), π(γN

1 ), . . . , π(γN
d )

have a non-zero common invariant vector in H.
Proof Let M be the factor generated by π(Γ) and denote by τ the trace
on M defined by ϕ.

Write the elements in Q/Z as a sequence {αi)i≥1. For every i ≥ 1, let

pi : H → Hγ0
αi

denote the orthogonal projection onto Hγ0
αi
. Observe that pi ∈M (in fact, pi

belongs to the abelian von Neumann algebra generated by π(γ0)). We have
τ(pi) ∈ [0, 1] and

∑
i≥1 τ(pi) = 1, since

∑
i≥1 pi = I,

Let ε be a real number with

0 < ε < 1/2d.

There exists i0 ≥ 1 such that

i0∑
i=1

τ(pi) ≥ 1− ε.

Since elements in Q/Z have finite order, we can find an integer N ≥ 1 such
that

αN
i = 1 for all i ∈ {1, . . . , i0}.

Then π(γN
0 ) acts as the identity on

i0⊕
i=1

Hγ0
αi
.

For l ∈ {0, 1, . . . , d}, let HγN
l be the subspace of π(γN

l )–invariant vectors
in H. We claim that

HγN
0 ∩HγN

1 ∩ · · · ∩ HγN
d 6= {0}.

14



For every k ∈ {0, 1, . . . , d}, let qk denote the orthogonal projection onto

HγN
0 ∩HγN

1 ∩ · · · ∩ HγN
k .

It is clear that qk ∈M.
We claim that

(1) τ(qk) ≥ 1− 2kε for all k = 0, 1, . . . , d.

Once proved, this will imply that

τ(qd) ≥ 1− 2dε > 0,

and hence qd 6= 0 since τ is faithful on M ; this will finish the proof of the
lemma.

To prove (1), we proceed by induction on k. Since

i0⊕
i=1

Hγ0
αi
⊂ HγN

0 ,

we have q0 ≥
∑i0

i=1 pi. Hence,

τ(q0) ≥
i0∑

i=1

τ(pi) ≥ 1− ε,

and this proves (1) in the case k = 0.
Let k ≥ 1 and assume that

(2) τ(qk−1) ≥ 1− 2k−1ε.

Set
K = HγN

0 ∩HγN
1 ∩ · · · ∩ HγN

k−1

and set q = qk−1, the orthogonal projection on K.
Since any two elementary matrices are conjugate, we have γk = sγ0s

−1

for some element s ∈ SLn(Z). Observe that

HγN
k = π(s)HγN

0 .

Consider the operator
T = (1− q)π(s−1)q

15



on H. Observe that T ∈ M. For η ∈ H, we have T (η) = 0 if and only if
π(s−1)q(η) ∈ K, that is, if and only q(η) ∈ π(s)K. Hence

(3) KerT = (K ∩ π(s)K)⊕K⊥.

Let
pKer T : H → KerT

be the orthogonal projection on KerT. Then pKer T ∈ M, since T ∈ M.
Moreover, since the range of T is contained in K⊥, we have

τ(1− q) ≥ τ(I)− τ(pKer T ) = 1− τ(pKer T ).

Hence, by (2),

(4) τ(pKer T ) ≥ 1− 2k−1ε.

We have, by (3)
τ(pKer T ) = τ(pK∩π(s)K) + τ(1− q),

where pK∩π(s)K ∈M is the orthogonal projection on K ∩ π(s)K. Now,

K ∩ π(s)K ⊂ K ∩ π(s)HγN
0 = K ∩HγN

k .

Since qk is the orthogonal projection on K ∩ HγN
k , it follows in view of (2)

and (4) that

τ(qk) ≥ τ(pK∩π(s)K)

= τ(pKer T )− (1− τ(q))

≥ (1− 2k−1ε)− 2k−1ε = 1− 2kε.

This proves the claim (1) and finishes the proof of the lemma. ¥

Corollary 11 Under the assumption made at the beginning of this section,
there exists an irreducible representation π0 of the congruence quotient

SLn(Z)/Γ(N2) ∼= SLn(Z/N2Z)

such that ϕ is the (normalized) character of π0 lifted to SLn(Z), where N is
as in Lemma 10.
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Proof By the previous lemma, the subspace K of the common invariant
vectors under π(γN

0 ), π(γN
1 ), . . . , π(γN

d ) is non-zero. Let Γ be the subgroup
of SLn(Z) generated by

{γN
0 , γ

N
1 , . . . , γ

N
d }.

By [Tits76, Proposition 2], Γ contains the congruence normal subgroup Γ(N2).
Consider the subspace

HΓ(N2) = {η ∈ H : π(γ)η = η for all γ ∈ Γ(N2)},
of π(Γ(N2))-invariant vectors. Then HΓ(N2) 6= {0} since K ⊂ HΓ(N2). More-
over, HΓ(N2) is invariant under π(SLn(Z)), as Γ(N2) is normal in SLn(Z).

On the other hand, HΓ(N2) is clearly invariant under ρ(SLn(Z)). It follows
that

HΓ(N2) = H.
Hence, π factorizes through the finite group SLn(Z)/Γ(N2). It follows thatH
is finite-dimensional, that π is a equivalent to a multiplemπ0 of an irreducible
representation π0 of SLn(Z)/Γ(N2) with m = dim(π0), and that ϕ is the
normalized character of π0. ¥

6 Proof of Theorem 3: Second case

With the notation as in Section 4, we assume now that

H = HV
∞ for every copy V of Zn−1 in SLn(Z).

This is equivalent to:

ϕ|V = δe for every copy V of Zn−1 in SLn(Z).

Let χϕ be the unitary character of the centre C = {±I} of SLn(Z) such
that

ϕ(zγ) = χϕ(z)ϕ(γ)for all z ∈ C, γ ∈ SLn(Z).

We claim that

ϕ(γ) =

{
0 if γ ∈ SLn(Z) \ C
χϕ(γ) if γ ∈ C.

The following proposition, which is of independent interest, will play a
crucial rôle.
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Proposition 12 Every matrix γ ∈ SLn(Z) is conjugate to the product g1g2g3

of three matrices of the form

g1 =




1 ∗ · · · ∗
0 ∗ · · · ∗
... ∗
0 ∗ · · · ∗


 ∈ Gt

1 , g2 =




∗ ∗ · · · ∗
... ∗
∗ ∗ · · · ∗
0 0 0 1


 ∈ Gn

and

g3 =




1 0 0 · · · 0
∗ 1 0 · · · 0
...

...
...

...
...

∗ 0 0 · · · 1


 ∈ V1

Proof
• First step: We first claim that γ is conjugate to a matrix γ1 with first
column of the form (∗, 0, ∗, 0, . . . , 0)t. This is Lemma 1 in [Bren60]. The result
is proved by conjugating γ by permutation matrices (with sign ajusted) and
by elementary matrices of the type eij with 1 < i 6= j ≤ n.

So, we can assume that the first column of γ is of the form (k, 0, l, 0, . . . , 0)t

for k, l ∈ Z.
• Second step: There exists a matrix γ1 ∈ Gn such that the first column of
γ1γ is (k, 1, l, 0, . . . , 0)t. Indeed, since gcd(k, l) = 1, there exist p, q ∈ Z such
that pk + ql = 1. We can take

γ1 =




1 0 0 · · · 0
p 1 q · · · 0
...

...
...

...
...

0 0 0 · · · 1


 ∈ Gn.

• Third step: There exists a matrix γ2 ∈ Gt
1 ∩Gn such that the first column

of γ2γ1γ is (1, 1, l, 0, . . . , 0)t. Indeed, we can take

γ2 =




1 1− k 0 · · · 0
0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1


 ∈ Gn.
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• Fourth step: There exists a matrix γ3 ∈ V1 such that the first column of
γ3γ2γ1γ is (1, 0, 0, 0, . . . , 0)t. Indeed, we can take

γ3 =




1 0 0 · · · 0
−1 1 0 · · · 0
−l 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1



∈ V1.

By the last step, γ4 = γ3γ2γ1γ ∈ Gt
1. We have

γ4γγ
−1
4 = γ4(γ

−1
1 γ−1

2 )γ−1
3 .

The claim follows, since γ−1
1 γ−1

2 ∈ Gn and γ−1
3 ∈ V1. ¥

Remark 13 In the case n ≥ 4, the previous proposition can be improved:
every γ ∈ SLn(Z) is conjugate to a product g1g2 ∈ Gt

1Gn. Indeed, in this
case, the matrix γ3 in the fourth step of the proof belongs to Gn and hence

γ4γγ
−1
4 = γ4(γ

−1
1 γ−1

2 γ−1
3 ) ∈ Gt

1Gn.

Returning to the proof of Theorem 3, the previous proposition implies
that it suffices to show that

ϕ(γ) = 0 for all γ ∈ Gt
1GnV1 with γ /∈ C.

For this, several preliminary steps will be needed.
We will use several times the following elementary lemma.

Lemma 14 Let Γ be a group and (π,H) a unitary representation of Γ. Let
ψ = 〈π(·)ξ, ξ〉 be an associated positive definite function such that ψ = δe.
Then, for every sequence (gk)k∈N of pairwise distinct elements gk ∈ Γ, the
sequence (π(gk)ξ)k∈N converges weakly to 0 in H.
Proof For k, l ∈ N with k 6= l, we have

〈π(gk)ξ, π(gl)ξ〉 = 〈π(g−1
l gk)ξ, ξ〉

= ψ(g−1
l gk) = 0.
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Therefore, (π(gk)ξ)k∈N is an orthonormal sequence inH and the claim follows.¥

The first step in this part of the proof of Theorem 3 is to show that

ϕ(γ) = 0 for all γ ∈ Gt
1 ∪Gn with γ /∈ C.

For elements x, y in a group, let [x, y] denote the commutator x−1y−1xy.

Lemma 15 Let V be a copy of Zn−1 in SLn(Z) and let G be the normalizer
of V. Then ϕ(γ) = 0 for every γ ∈ G \ C.
Proof Write

V = Zx1 ⊕ · · · ⊕ Zxn,

where x1, . . . , xn are the elementary matrices contained in V.
Let γ ∈ G \ C. We claim that there exists i ∈ {1, . . . , n} such that

x−k
i γxk

i 6= x−l
i γx

l
i for all k, l ∈ Z, k 6= l.

Indeed, otherwise there would exist non-zero integers ki such that γ is in the
centralizer of xki

i for all i ∈ {1, . . . , n}. This would imply that γ ∈ C (see
Lemma 6).

The commutators [γ, xk
i ] belong to V and are pairwise distinct. Hence,

by Lemma 14, the sequence (π([γ, xk
i ])ξ)k∈N is weakly convergent to 0 in H.

For k ∈ N, we have

ϕ(γ) = ϕ(x−k
i γxk

i )

= ϕ(γ[γ, xk])

= 〈π([γ, xk
i ])ξ, π(γ−1)ξ〉.

Hence,
ϕ(γ) = lim

k
〈π([γ, xk

i ])ξ, π(γ−1)ξ〉 = 0,

as claimed. ¥
The next step is to show that

ϕ(γ) = 0 for all γ ∈ Gt
1Gn with γ /∈ C.

Lemma 16 Let V,W be two copies of Zn−1 in SLn(Z) with V ∩W 6= {0}.
Let G,H be the normalizers of V and W, respectively. Let γ = gh with g ∈ G,
h ∈ H, and γ /∈ C. Then ϕ(γ) = 0.
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Proof If g ∈ C or h ∈ C, then γ ∈ G or γ ∈ H and then ϕ(γ) = 0, by
Lemma 15. Hence, we can assume that g /∈ C and h /∈ C.

Let x denote the elementary matrix such that

V ∩W = 〈x〉.

It is readily verified that, for k ∈ Z \ {0}, the centralizer of xk is contained
in G ∩H. Hence, we can assume that γ does not belong to this centralizer,
that is, that the elements x−kγxk are pairwise distinct.

We have

x−kγxk = x−kgxkx−khxk = g[g, xk]x−khxk,

Set yk = [g, xk]x−khxk. Observe that V ⊂ G ∩H. Since [g, xk] ∈ V, we have
yk ∈ H. Moreover, the elements yk are pairwise distinct, since

yk = g−1x−kγxk.

Hence, again by Lemma 14, the sequence (π(yk)ξ)k∈N is weakly convergent
to 0 in H. As in the previous lemma, it follows that

ϕ(γ) = lim
k
ϕ(x−kγxk) = lim

k
〈π(yk)ξ, π(g−1)ξ〉 = 0. ¥

We will also need the following consequence of Lemma 16.

Lemma 17 Let V,W two copies of Zn−1 in SLn(Z) with V ∩W 6= {0}. Let
G,H be the normalizers of V and W, respectively. Let (γk)k∈N be a sequence
of pairwise distinct elements in GH. Then (π(γk)ξ)k∈N converges weakly to 0
in H.
Proof Observe that (π(γk)ξ)k∈N is a bounded sequence in H. Therefore,
it suffices to show that every subsequence (π(γki

)ξ)i∈N of (π(γk)ξ)k∈N has a
subsequence which weakly converges to 0.

For i ∈ N, write γki
= gki

hki
for gki

∈ G and hki
∈ H.

Since C is finite and since the elements γki
are pairwise distinct, we can

find a subsequence of (γki
)i, still denoted by (γki

)i, such that γ−1
kj
γki

/∈ C for
all i 6= j. It follows that

g−1
kj
gki
hki
h−1

kj
/∈ C for all i 6= j.
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From Lemma 16, we deduce that, for all i 6= j,

ϕ(γ−1
kj
γki

) = ϕ(h−1
kj
g−1

kj
gki
hki

)

= ϕ(g−1
kj
gki
hki
h−1

kj
)

= 0,

since g−1
kj
gki

∈ G and hki
h−1

kj
∈ H. As in the proof of Lemma 14, this shows

that (π(γki
)ξ)i weakly converges to 0. ¥

We can now conclude the proof of Theorem 3. Let γ ∈ SLn(Z) \ C. We
want to show that ϕ(γ) = 0.

By Proposition 12, we can assume that γ = g1g2g3 for matrices of the
form

g1 =




1 ∗ · · · ∗
0 ∗ · · · ∗
... ∗
0 ∗ · · · ∗


 ∈ Gt

1 , g2 =




∗ ∗ · · · ∗
... ∗
∗ ∗ · · · ∗
0 0 0 1


 ∈ Gn

and

g3 =




1 0 0 · · · 0
a2 1 0 · · · 0
...

...
...

...
...

an 0 0 · · · 1


 ∈ V1.

If g3 ∈ Gn, then γ is a non-central element in Gt
1Gn, and it follows from

Lemma 16 that ϕ(γ) = 0. We can therefore assume that g3 /∈ Gn, that is,
an 6= 0.

Let x be the elementary matrix e2,n, thus

x =




1 0 0 · · · 0
0 1 0 · · · 1
...

...
...

...
...

0 0 0 · · · 1


 .

Then x ∈ Gt
1∩Gn and the centralizer of every power xk for k 6= 0 is contained

in Gn. Hence, if γ is contained in the centralizer of some power xk for k 6= 0,
the claim follows from Lemma 15. We can therefore assume that

x−kγxk 6= x−lγxl for all k 6= l.
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We compute that

x−kg3x
k =




1 0 0 · · · 0
a2 + kan 1 0 · · · 0

a3 0 1 · · · 0
...

...
...

...
...

an 0 0 · · · 1



.

Hence x−kg3x
k = αkβ, where

αk =




1 0 0 · · · 0
kan 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1




and β =




1 0 0 · · · 0
a2 1 0 · · · 0
a3 0 1 · · · 0
...

...
...

...
...

an 0 0 · · · 1



.

Observe that αk ∈ Gn for every k. We have

x−kγxk = x−kg1g2g3x
k

= (x−kg1x
k)(x−kg2x

k)(x−kg3x
k)

= (x−kg1x
k)(x−kg2x

k)αkβ.

Now, since x ∈ Gt
1 ∩ Gn, we have x−kg1x

k ∈ Gt
1 and x−kg2x

kαk ∈ Gn. It
follows that

x−kγxkβ−1 ∈ Gt
1Gn for every k.

Set
γk = x−kγxkβ−1.

Since γ is not in the centralizer of xk, we have γk 6= γl for all k 6= l. Hence,
by Lemma 17, the sequence (π(γk))k∈N converges weakly to 0. It follows that

ϕ(γ) = lim
k
ϕ(βx−kγxkβ−1)

= lim
k
ϕ(βγk)

= lim
k
〈π(βγk)ξ, ξ〉

= lim
k
〈π(γk)ξ, π(β−1)ξ〉

= 0.

This concludes the proof of Theorem 3.¥
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7 Deducing Theorem 1 from Theorem 3

Let Γ = SLn(Z) for n ≥ 3. Let M be a finite factor, with trace τ, and let
π : Γ → U(M) be a group homomorphism such that π(Γ)′′ = M. Then
ϕ = τ ◦ π is a character of Γ.

Assume that M is finite dimensional. Let πϕ : Γ → U(Mϕ) be the fi-
nite factor representation associated to ϕ (see Section 2). The mapping
πϕ(γ) 7→ π(γ) extends to an isomorphism Mϕ → M of von Neumann alge-
bras. HenceMϕ is finite dimensional and, by Theorem 3, ϕ is the character of
an irreducible finite dimensional representation of some congruence quotient
SLn(Z/NZ) for N ≥ 1. It follows that π factorizes through SLn(Z/NZ).

Assume now that M is infinite dimensional. By Theorem 3, we have
ϕ = χ̃ for a character χ of the centre C. If n is odd, let Λ = Γ and, if
n is even, let Λ = Γ(N) be a congruence subgroup for N ≥ 3. Then Λ
has finite index in Γ and Λ ∩ C = {e}. We therefore have ϕ|Λ = δe. The
GNS-representation of Λ corresponding to δe is the regular representation λΛ

which generates the von Neumann algebra L(Λ). The mapping λΛ(γ) 7→ π(γ)
extends to a normal homomorphism L(Λ) →M.

Remark 18 Observe that the conclusion in (ii) of Theorem 1 is that π|Λ
extends to L(Λ) and not just to U(L(Λ)). P. de la Harpe pointed out to
me that this is a stronger statement: a homomorphism U(M1) → U(M2)
between the unitary groups of two finite factors M1,M2 does not necessarily
extend to an algebra homomorphism M1 → M2. As a simple example, take
M1 = M2(C) andM2 = M4(C) ∼= M2(C)⊗M2(C). The group homomorphism
π : U(2) → U(4), g 7→ g ⊗ g does not extend to an algebra homomorphism
M2(C) →M4(C).

8 A question of Kirchberg

A conjecture of Kirchberg [Kirc93, Section 8, (B4)] is:

The full C∗-algebra C∗(SL2(Z)×SL2(Z)) of the direct product SL2(Z)×
SL2(Z) has a faithful tracial state.

As shown in [Kirc93], this problem is in fact equivalent to a series of out-
standing conjectures, among them the following one which was suggested by
Connes in [Conn76, page 105]:
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Every factor of type II1 with separable predual is a subfactor of the
ultrapower Rω of the hyperfinite factor R of type II1.

A positive answer to the following question of Kirchberg [Kirc93, Remark 8.2]
would imply the conjecture above:

Does C∗(SL4(Z)) have a faithful tracial state?

Indeed, SL2(Z) × SL2(Z) embedds as a subgroup of SL4(Z), for instance,
via the mapping

SL2(Z)× SL2(Z) 3 (γ1, γ2) →
(
γ1 0
0 γ2

)
∈ SL4(Z).

A faithful tracial state on C∗(SL4(Z)) would give, by restriction, a faithful
tracial state on C∗(SL2(Z)× SL2(Z)).

We proceed to show that the answer to this question is negative. In fact,
the following stronger result will be proved. We will consider the copy

Λ =

{(
γ 0
0 I

)
: γ ∈ SL2(Z)

}
∼= SL2(Z)

of SL2(Z) inside SLn(Z).

Corollary 19 Let n ≥ 3 and set Γ = SLn(Z). Let ϕ be a tracial state on
C∗(Γ). Then ϕ|C∗(Λ) is not faithful.

Proof Let π be the cyclic unitary representation of Γ corresponding to ϕ.
By Theorem 3, π decomposes as a direct sum

π∞ ⊕
⊕

i

σi ,

where π∞ is a multiple of the regular representation λΓ, and where every
representation σi factorizes through some congruence quotient Γ/Γ(Ni).

Let Repcong(Γ) denote the set of all unitary representations of Γ which
factorize through some congruence quotient. In fact, as a consequence of the
positive answer to the congruence subgroup problem, Repcong(Γ) coincides
with the set of all finite dimensional unitary representations of Γ (see [Bekk99,
Proposition 2]). This implies (see, for instance, [Bekk99, Proposition 1]) that

⋂

σ∈Repcong(Γ)

C∗ −Ker σ ⊂ C∗ −KerλΓ,
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where C∗ − Kerσ denotes the kernel in C∗(Γ) of the extension of a unitary
representation σ of Γ.

We consider now the restriction π|Λ of π to Λ. Observe that

Repcong(Λ) = {σ|Λ : σ ∈ Repcong(Γ)} .
Since C∗ −KerλΛ = C∗ −Ker(λΓ|Λ), we have

⋂

σ∈Repcong(Λ)

C∗ −Ker σ ⊂ C∗ −KerλΛ,

It follows from Selberg’s inequality λ1 ≥ 3/16 (see [Bekk99, Lemma 3])
and from the fact that SL2(Z) does not have Kazhdan’s Property (T) that
Repcong(Λ) does not separate the points of C∗(Λ), that is,

⋂

σ∈Repcong(Λ)

C∗ −Kerσ 6= {0}.

Hence, we have

C∗ −Ker(π|Λ) = C∗ −Ker(π∞|Λ) ∩
⋂
i

C∗ −Ker(σi|Λ)

= C∗ −KerλΛ ∩
⋂
i

C∗ −Ker(σi|Λ)

⊃ C∗ −KerλΛ ∩
⋂

σ∈Repcong(Λ)

C∗ −Kerσ

=
⋂

σ∈Repcong(Λ)

C∗ −Ker σ

and C∗ −Ker(π|Λ) 6= {0}. This clearly implies that ϕ|Λ is not faithful. ¥

Remark 20 The previous result does not hold for n = 2. Indeed, as was
shown in [Choi80, Corollary 9], C∗(SL2(Z) has a faithful trace. In fact a
stronger result is proved in [Choi80, Theorem 7]: C∗(SL2(Z) is residually
finite dimensional, that is, the finite dimensional representations of SL2(Z)
separate the points of C∗(SL2(Z)).

It is shown in [LuSh04] that other interesting groups have a residually
finite dimensional full C∗-algebra; this is, for instance, the case for funda-
mental groups of surfaces.
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9 A remark on semi-finite traces

As mentioned in the introduction, it is conceivable that semi-finite, infinite
traces exist on C∗(PSLn(Z)) for n ≥ 3. The following result implies that no
such trace factorizes through the reduced C∗-algebra C∗r (PSLn(Z)) for any
integer n ≥ 2.

Proposition 21 Let G be a connected real semisimple Lie group without
compact factors and with trivial centre. Let Γ be a Zariski-dense subgroup of
G. Then the tracial state δe is, up to a scalar multiple, the unique semi-finite
trace on C∗r (Γ). In particular, C∗r (Γ) has no normal factor representation of
type II∞.

Proof Let ϕ : C∗r (Γ)+ → [0,∞] be a semi-finite trace on the set of positive
elements of C∗r (Γ).

We use an observation from [Rose89, page 583]. It is well-known that
there exist a non-zero two-sided ideal m, called the ideal of definition of ϕ,
and a linear functional on m which coincides with ϕ on m+ (see [Dix-C*,
Proposition 6.1.2]). Now, by [BeCH95], C∗r (Γ) is simple, that is, C∗r (Γ) has
no non-trivial two-sided (closed or non-closed) ideals. Hence, m = C∗r (Γ) and
ϕ is a finite trace. By [BeCH95], δe is the unique tracial state on C∗r (Γ) and
the claim follows.¥

Examples of Zariski dense subgroups Γ of a group G as in the previous
proposition include all lattices in G. So Proposition 21 applies, for instance,
when Γ = PSLn(Z) for n ≥ 2 or when Γ is the fundamental group of an
oriented compact surface of genus ≥ 2.
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