Operator-algebraic superridigity for $SL_n(\mathbb{Z}), n \geq 3$

Bachir Bekka

September 13, 2006

Abstract

For $n \geq 3$, let $\Gamma = SL_n(\mathbb{Z})$. We prove the following superridigity result for Γ in the context of operator algebras. Let $L(\Gamma)$ be the von Neumann algebra generated by the left regular representation of Γ . Let M be a finite factor and let U(M) be its unitary group. Let $\pi : \Gamma \to U(M)$ be a group homomorphism such that $\pi(\Gamma)'' = M$. Then either

- (i) M is finite dimensional, or
- (ii) there exists a subgroup of finite index Λ of Γ such that $\pi|_{\Lambda}$ extends to a homomorphism $U(L(\Lambda)) \to U(M)$.

This answers, in the special case of $SL_n(\mathbb{Z})$, a question of A. Connes discussed in [Jone00, Page 86]. The result is deduced from a complete description of the tracial states on the full C^* -algebra of Γ .

As another application, we show that the full C^* -algebra of Γ has no faithful tracial state, thus answering a question of E. Kirchberg.

1 Introduction

Two major achievements in the study of discrete subgroups in semi-simple Lie groups are Mostow's ridigity theorem and Margulis' superrigidity theorem. A weak version of the latter is as follows. Let Γ be a lattice in a simple real Lie group G with finite centre and with $\mathbb{R} - \operatorname{rank}(G) \geq 2$. Let H be another simple real Lie group with finite centre, and let $\pi : \Gamma \to H$ be a homomorphism such that $\pi(\Gamma)$ is Zariski-dense in H. Then, either H is compact or there exists a finite index subgroup Λ of Γ such that $\pi|_{\Lambda}$ extends to a continuous homomorphism $G \to H$. For more general results, see [Marg91] and [Zimm84]. Moreover, as shown by Corlette, the superridity theorem continues to hold for the simple real Lie groups G with $\mathbb{R} - \operatorname{rank}(G) = 1$ which are not locally isomorphic to SO(n, 1) or SU(n, 1).

In the theory of von Neumann algebras, discrete groups (as well as their actions) always played a prominent rôle. To a discrete group Γ is associated a distinguished von Neumann algebra $L(\Gamma)$, namely the von Neumann algebra generated by the left regular representation λ_{Γ} of Γ ; thus, $L(\Gamma)$ is the closure for the strong operator topology of the linear span of $\{\lambda_{\Gamma}(\gamma) : \gamma \in \Gamma\}$ in the algebra $\mathcal{L}(\ell^2(\Gamma))$ of all bounded operators on the Hilbert space $\ell^2(\Gamma)$.

The first rigidity result in the context of operator algebras is the result by A. Connes [Conn80] showing that, for a group Γ with Kazhdan's Property (T), the group of outer automorphisms of $L(\Gamma)$ is countable. A major problem in this area is whether such a group Γ can be reconstructed from its von Neumann algebra $L(\Gamma)$. In recent years, a series of remarkable results concerning this question, with applications to ergodic theory, have been obtained by S. Popa ([Popa06-a], [Popa06-b]; for an account, see [Vaes06]). Other relevant work includes [CoHa89] and [Furm99].

The purpose of this paper is to discuss another kind of rigidity, namely the rigidity of a discrete group in the unitary group of its von Neumann algebra. If Γ is a discrete group, we view Γ as a subgroup of the unitary group $U(L(\Gamma))$ of $L(\Gamma)$, that is, the group of the unitary operators in $L(\Gamma)$. It was suggested by Connes (see [Jone00, Page 86]) that, for Γ as in the statement of Margulis' theorem, a superrigity result should hold in which Gabove is replaced by $U(L(\Gamma))$ and H by the unitary group U(M) of a type II_1 factor. We prove such a superrigity result in the case $\Gamma = SL_n(\mathbb{Z})$ for $n \geq 3$.

Recall that a von Neumann algebra M is a factor if the centre of M is reduced to the scalar operators. The von Neumann algebra M is said to be finite if there exists a finite normal faithful trace on M. A finite factor is a type II_1 factor which is infinite dimensional. Recall also that $L(\Gamma)$ is a finite von Neumann algebra. Moreover, $L(\Gamma)$ is a factor if and only if Γ is an ICC-group, that is, if all its conjugacy classes, except $\{e\}$, are infinite. For an account on the theory of von Neumann algebras, see [Dix-vN].

Theorem 1 Let $\Gamma = SL_n(\mathbb{Z})$ for $n \geq 3$. Let M be a finite factor and let U(M) its unitary group. Let $\pi : \Gamma \to U(M)$ be a group homomorphism.

Assume that the linear span of $\pi(\Gamma)$ in dense in M for the strong operator topology. Then either

- (i) M is finite dimensional, that is, M is isomorphic to a matrix algebra $M_n(\mathbb{C})$ for some $n \in \mathbb{N}$, in which case π factorizes to a multiple of an irreducible representation of some congruence quotient $SL_n(\mathbb{Z}/N\mathbb{Z})$ for $N \in \mathbb{N}$, or
- (ii) there exists a subgroup of finite index Λ of Γ such that $\pi|_{\Lambda}$ extends to a normal homomorphism $L(\Lambda) \to M$ of von Neumann algebras. In particular, $\pi|_{\Lambda}$ extends to a group homomorphism $U(L(\Lambda)) \to U(M)$.

Let C be the centre of $SL_n(\mathbb{Z})$. Observe that C is trivial for odd n and $C = \{\pm I\}$ for even n. If, in the statement of the theorem above, we take instead $\Gamma = PSL_n(\mathbb{Z}) = SL_n(\mathbb{Z})/C$, then $L(\Gamma)$ is a factor and the conclusion (ii) holds for $\Lambda = \Gamma$.

The method of proof of Theorem 1 can be adapted to establish the same result when Γ is the symplectic group $Sp_{2n}(\mathbb{Z})$ for $n \geq 2$; it works presumably for the group of integral points of any Chevalley group of rank ≥ 2 . No such result can be true for the modular group $SL_2(\mathbb{Z})$; see Remark 4 below.

Remark 2 (i) Let Γ be a countable ICC–group with Kazhdan's Property (T). It was shown in [CoJo85] that $L(\Gamma)$ cannot be a subfactor of $L(F_2)$, where F_2 is a non-abelian free group. This, combined with Theorem 1, shows that every representation of $PSL_n(\mathbb{Z})$ for $n \geq 3$ into $U(L(F_2))$ decomposes as a direct sum of finite dimensional representations. This is a special case of a result of G. Robertson [Robe93] valid for all groups with Property (T). For a related work, see [Vale97].

(ii) Let M be a finite factor. The unitary group U(M) has as centre a copy of the circle group S^1 , namely the unitary scalar operators. It was shown in [Harp79] that the projective unitary group $U(M)/S^1$ of M is a simple group.

The result in Theorem 1 amounts to the classification of the *characters* of Γ (see Section 7), that is, the functions $\varphi : \Gamma \to \mathbb{C}$ with the following properties:

- φ is central, that is, $\varphi(\gamma x \gamma^{-1}) = \varphi(x)$ for all $\gamma, x \in \Gamma$,
- φ is positive definite, that is, $\sum_{i=1}^{n} \overline{c_j} c_i \varphi(\gamma_j^{-1} \gamma_i) \ge 0$ for all $\gamma_1, \ldots, \gamma_n \in \Gamma$ and $c_1, \ldots, c_n \in \mathbb{C}$,

- φ is normalized, that is, $\varphi(e) = 1$,
- φ is indecomposable, that is, φ cannot be written in a non-trivial way as a convex combination of two central positive definite normalized functions.

There are two obvious examples of characters of a group Γ . First of all, the normalized character (in the usual sense) of an irreducible finite dimensional unitary representations of Γ is a character of Γ in the above sense. For $\Gamma = SL_n(\mathbb{Z}), n \geq 3$, it is well-known that every such representation factorizes through some congruence quotient $SL_n(\mathbb{Z}/N\mathbb{Z})$ for an integer N; this a consequence of the solution of the congruence subgroup problem (see [BaMS67], [Menn65]; see also [Stei85]). Much is known about the characters of the finite groups $SL_n(\mathbb{Z}/N\mathbb{Z})$; see [Zele81].

Let C be the centre of the group Γ . Assume that all conjugacy classes, except those of the elements from C, are infinite. Then, for every unitary character χ of the abelian group C, the trivial extension $\tilde{\chi}$ of χ to Γ , defined by $\tilde{\chi} = 0$ on $\Gamma \setminus C$, is a character of Γ . In particular, if Γ is ICC, then δ_e , the Dirac function at e, is a character of Γ . When n is even, all conjugacy classes of $PSL_n(\mathbb{Z})$, except $\{I\}$ and $\{-I\}$, are infinite.

Our main result says that $SL_n(\mathbb{Z})$ for $n \geq 3$ has no characters other than the obvious ones described above.

Theorem 3 Let φ be a character of $SL_n(\mathbb{Z})$ for $n \geq 3$. Then, either

- (i) φ is the character of an irreducible finite dimensional representation of some congruence quotient $SL_n(\mathbb{Z}/N\mathbb{Z})$ for $N \ge 1$, or
- (ii) φ is the trivial extension $\tilde{\chi}$ of a character χ of the centre of $SL_n(\mathbb{Z})$..

Remark 4 No classification of the characters of the modular group $SL_2(\mathbb{Z})$ can be expected. Indeed, this group contains the free non-abelian group F_2 on two generators as normal subgroup. Every character of F_2 extends to a character on $SL_2(\mathbb{Z})$. Now, F_2 has a huge number of characters: if M is any finite factor with trace τ , every pair of unitaries in M defines a homomorphism $\pi: F_2 \to U(M)$ and a corresponding character $\tau \circ \pi$ on F_2 .

The problem of the description of the characters of a discrete group Γ has been considered by several authors. E. Thoma [Thom64b] solved

this problem for the infinite symmetric group S_{∞} (see also [VerKe81]), H -L. Skudlarek [Skud76] for the group $\Gamma = GL(\infty, \mathbb{F})$, where \mathbb{F} is a finite field, and D. Voiculescu [Voic76] for $\Gamma = U(\infty)$; see also [StVo75] and [Boye83]. A.A. Kirillov [Kiri65] described the characters of $\Gamma = GL_n(\mathbb{K})$ or $SL_n(\mathbb{K})$ for $n \geq 2$, where \mathbb{K} is an infinite field (see also [Rose89] and [Ovci71]).

Our proof of Theorem 3 is based on an analysis of the restriction $\varphi|_V$ of a given character φ of $SL_n(\mathbb{Z})$ to various copies V of \mathbb{Z}^{n-1} . We will see that we have a dichotomy corresponding to the two different types of characters from Theorem 3: either the measure on the torus \mathbb{T}^{n-1} associated to $\varphi|_V$ is atomic or this measure is the Lebesgue measure for every V. An important ingredient in our analysis is the solution of the congruence subgroup for $SL_n(\mathbb{Z})$ for $n \geq 3$.

The result of Theorem 3 can be interpreted as a classification of the traces on the full C^* -algebra $C^*(\Gamma)$ of $\Gamma = SL_n(\mathbb{Z})$ for $n \geq 3$ (see Section 2).

E. Kirchberg asked in [Kirc93, Remark 8.2, page 487] whether the full C^* -algebra of $SL_4(\mathbb{Z})$ has a faithful trace. He was motivated by the fact that a positive answer to this question would imply a series of outstanding conjectures in the theory of von Neumann algebras (see Section 8). As a consequence of Theorem 3, we will see that the answer to Kirchberg's question is negative, namely:

Corollary 5 The full C^* -algebra of $SL_n(\mathbb{Z})$ has no faithful tracial state for $n \geq 3$.

In fact, we will prove the stronger result Corollary 19 below.

Recall that the reduced C^* -algebra $C_r^*(\Gamma)$ of a group Γ is the closure of the linear span of $\{\lambda_{\Gamma}(\gamma) : \gamma \in \Gamma\}$ in $\mathcal{L}(\ell^2(\Gamma))$ for the operator norm. Recall also that δ_e factorizes to a faithful tracial state on $C_r^*(\Gamma)$. The finite dimensional representations of $PSL_n(\mathbb{Z})$ do not factorize through $C_r^*(PSL_n(\mathbb{Z}))$, since $PSL_n(\mathbb{Z})$ is not amenable. As a consequence, Theorem 3 implies that δ_e is the unique tracial state on $C_r^*(PSL_n(\mathbb{Z}))$. This also follows from [BeCH95], where a different method is used.

Theorem 3 leaves open the problem of existence of *infinite*, semi-finite traces on $C^*(SL_n(\mathbb{Z}))$. We do not know whether such traces exist. Using [BeCH95], we can only show that no such trace exists on $C_r^*(PSL_n(\mathbb{Z}))$. In fact, this result is valid for a more general class of groups including $PSL_2(\mathbb{Z})$ (see Proposition 21 below).

This paper is organized as follows. Sections 2 and 3 are devoted to some general facts. The proof of Theorem 3 is spread over three sections: in

Section 4, we show that the proof splits into two cases which are then treated accordingly in Sections 5 and 6. In Section 7, we show that Theorem 1 is a consequence of Theorem 3. Corollary 5 is proved in Section 8 and Section 9 is devoted to a remark on the problem of the existence of infinite traces.

Acknowlegments We are grateful to S. Popa who pointed out to us Connes' question from [Jone00] and suggested to emphasize the superrigidity result Theorem 1. Thanks are also due to E. Blanchard, E. Kirchberg, and P. de la Harpe, for interesting comments.

2 Factor representations and characters

We review some general facts concerning the relationships between central positive definite functions on groups and factor representations. Details can be found in [Dix-C^{*}, Chapters 6 and 17] or [Thom64a].

Let Γ be a discrete group. We are interested in representations of Γ in the unitary group of a finite von Neumann algebra.

Recall that a finite trace or a tracial state on a C^* -algebra A with unit 1 is a linear functional τ on A which has the property

$$\tau(xy) = \tau(yx)$$
 for all $x, y \in A$,

which is positive (that is, $\tau(x^*x) \ge 0$ for all $x \in A$), and which is normalized by $\tau(1) = 1$. The trace τ is faithful if $\tau(x^*x) \ne 0$ for all $x \ne 0$.

Let M be a finite von Neumann algebra, with faithful trace normal τ . Let $\pi : \Gamma \to U(M)$ be a group homomorphism. The function $\varphi = \tau \circ \pi : \Gamma \to \mathbb{C}$ has the following properties:

- (i) φ is central;
- (ii) φ is positive definite;
- (iii) $\varphi(e) = 1$.

Let $CP(\Gamma)$ denote the set of functions $\varphi : \Gamma \to \mathbb{C}$ with Properties (i), (ii) and (iii) above.

Ley $\varphi \in CP(\Gamma)$. Then there exist a finite von Neumann algebra M_{φ} , with faithful normal trace τ_{φ} , and a group homomorphism $\pi_{\varphi} : \Gamma \to U(M_{\varphi})$ such that $\varphi = \tau_{\varphi} \circ \pi_{\varphi}$. Indeed, by GNS–construction, there exists a cyclic unitary representation π_{φ} of Γ on a Hilbert space \mathcal{H}_{φ} with a cyclic unit vector ξ_{φ} such that

$$\varphi(\gamma) = \langle \pi_{\varphi}(\gamma)\xi_{\varphi}, \xi_{\varphi} \rangle$$
 for all $\gamma \in \Gamma$.

Since φ is central, there exists another unitary representation ρ_{φ} of Γ on \mathcal{H}_{φ} which commutes with π_{φ} (that is, $\pi_{\varphi}(\gamma)\rho_{\varphi}(\gamma') = \rho_{\varphi}(\gamma')\pi_{\varphi}(\gamma)$ for all $\gamma, \gamma' \in \Gamma$) and with the property that

$$\rho_{\varphi}(\gamma)\xi_{\varphi} = \pi_{\varphi}(\gamma^{-1})\xi_{\varphi} \quad \text{for all} \quad \gamma \in \Gamma.$$

Let $M_{\varphi} = \pi_{\varphi}(\Gamma)''$ be the von Neumann subalgebra of $\mathcal{L}(\mathcal{H}_{\varphi})$ generated by $\pi_{\varphi}(\Gamma)$, where $\mathcal{S}' = \{T \in \mathcal{L}(\mathcal{H}_{\varphi}) : TS = ST \text{ for all } S \in \mathcal{S}\}$ denotes the commutant of a subset \mathcal{S} of $\mathcal{L}(\mathcal{H}_{\varphi})$. The mapping

$$T \mapsto \langle T\xi_{\varphi}, \xi_{\varphi} \rangle$$
 for all $T \in M_{\varphi}$

is a faithful normal trace τ_{φ} on M_{φ} and $\varphi = \tau_{\varphi} \circ \pi_{\varphi}$.

Moreover, if $N_{\varphi} = \rho_{\varphi}(\Gamma)''$ is the von Neumann subalgebra of $\mathcal{L}(\mathcal{H}_{\varphi})$ generated by $\rho_{\varphi}(\Gamma)$, then

$$M'_{\varphi} = N_{\varphi}$$
 and $N'_{\varphi} = M_{\varphi}$.

In particular, the common centre of M_{φ} and N_{φ} is $M_{\varphi} \cap N_{\varphi}$.

As an important example, let $\varphi = \delta_e$ be the Dirac function at the group unit e. Then $\varphi \in CP(\Gamma)$. The unitary representations π_{φ} and ρ_{φ} associated to φ are the left and right regular representations λ_{Γ} and ρ_{Γ} on $\ell^2(\Gamma)$. Morever, M_{φ} is the von Neumann algebra $L(\Gamma)$ of Γ .

The set $CP(\Gamma)$ is a compact and convex subset of the vector space of all bounded functions on Γ , equipped with the weak *-topology. The set of extremal points $E(\Gamma)$ of $CP(\Gamma)$ is the set of all indecomposable central positive definite functions on Γ . By Choquet theory, every $\varphi \in CP(\Gamma)$ may be written as a integral

$$\varphi = \int_{E(\Gamma)} \psi d\mu(\psi)$$

for a probability measure μ on $E(\Gamma)$, at least when G is countable. For $\varphi \in CP(\Gamma)$, we have that M_{φ} is a factor if and only if $\varphi \in E(\Gamma)$. As an example, the Dirac function δ_e belongs to $E(\Gamma)$ if and only if Γ is an ICC group.

Let M be a finite von Neumann algebra, with faithful normal trace τ , and let $\pi : \Gamma \to U(M)$ be a homomorphism such that $\pi(\Gamma)'' = M$. Observe that, if we set $\varphi = \tau \circ \pi \in CP(\Gamma)$, then, with the notation above, the mapping $\pi_{\varphi}(\gamma) \mapsto \pi(\gamma)$ extends to an isomorphism $M_{\varphi} \to M$ of von Neumann algebras.

A homomorphism $\pi : \Gamma \to U(M)$ for a finite factor M such that $\pi(\Gamma)'' = M$ will be called a finite factor representation of Γ . We say that two such representations $\pi_1 : \Gamma \to U(M_1)$ and $\pi_2 : \Gamma \to U(M_2)$ are quasi-equivalent if there exists an isomorphism $\Phi : M_1 \to M_2$ such that $\Phi(\pi_1(\gamma)) = \pi_2(\gamma)$ for all $\gamma \in \Gamma$. Summarizing the discussion above, we see that $E(\Gamma)$ classifies the finite factor representations of Γ , up to quasi-equivalence.

The set $E(\Gamma)$ parametrizes also the indecomposable traces on the full C^* algebra of Γ . Recall that the full C^* -algebra $C^*(\Gamma)$ of Γ is the C^* -algebra with the universal property that every unitary representation of Γ on a Hilbert space \mathcal{H} extends to a *-homomorphism $C^*(\Gamma) \to \mathcal{L}(\mathcal{H})$. The algebra $C^*(\Gamma)$ can be realized as completion of the group algebra $\mathbb{C}[\Gamma]$ under the norm

$$\left\|\sum_{\gamma\in\Gamma}c_{\gamma}\gamma\right\| = \sup\left\{\left\|\sum_{\gamma\in\Gamma}c_{\gamma}\pi(\gamma)\right\| : \pi\in\operatorname{Rep}(\Gamma)\right\},\$$

where $\operatorname{Rep}(\Gamma)$ denotes the set of (equivalence classes of) cyclic unitary representations of Γ .

We will view Γ as a subgroup of the group of unitaries in $C^*(\Gamma)$ by means of the canonical embedding $\Gamma \to C^*(\Gamma)$. Every trace on $C^*(\Gamma)$ defines by restriction to Γ an element of $CP(\Gamma)$. Conversely, every $\varphi \in CP(\Gamma)$ extends to a trace on $C^*(\Gamma)$, since, as seen above, $\varphi(\gamma) = \langle \pi_{\varphi}(\gamma)\xi_{\varphi}, \xi_{\varphi} \rangle$ and π_{φ} is a unitary representation of Γ .

3 Some subgroups of $SL_n(\mathbb{Z})$

Let n is a fixed integer with $n \geq 2$. For a pair of integers (i, j) with $1 \leq i \neq j \leq n$, denote by e_{ij} the corresponding elementary matrix, that is, the $(n \times n)$ -matrix with 1's on the diagonal, 1 at the (i, j)-entry, and 0 elsewhere. It is well-known that $SL_n(\mathbb{Z})$ is generated by

$$\{e_{ij} : 1 \le i \ne j \le n\}.$$

Moreover, for $n \geq 3$, any two elementary matrices are conjugate inside $SL_n(\mathbb{Z})$. Indeed, observe that the matrix

$$s_{ij} = e_{ij}e_{ji}^{-1}e_{ij} \in SL_n(\mathbb{Z})$$

permutes the *i*-th and the *j*-th standard unit vectors of \mathbb{Z}^n , up to a sign. Hence, if e_{kl} and e_{pq} are two elementary matrices, conjugation by a suitable product of matrices of the form s_{ij} will carry e_{kl} into e_{pq} or e_{pq}^{-1} . Now, e_{pq} and e_{pq}^{-1} are conjugate via a suitable diagonal matrix in $SL_n(\mathbb{Z})$, when $n \geq 3$.

The proof of the following two lemmas is by straightforward computation. We will always view an element $a \in \mathbb{Z}^n$ as column vector. Its transpose a^t is then a row vector. We denote by e_1, \ldots, e_n the standard unit vectors in \mathbb{Z}^n .

Lemma 6 Let k be a non-zero integer and let $i, j \in \{1, ..., n\}$ with $1 \le i \ne j \le n$. The centralizer of e_{ij}^k in $SL_n(\mathbb{Z})$ consists of all matrices with εe_i as *i*-th column and εe_j^t as *j*-th row for $\varepsilon \in \{\pm 1\}$.

For instance, the centralizer of e_{12}^k is the subgroup of all matrices of the form

$$\begin{pmatrix} \varepsilon & * & * & \cdots & * \\ 0 & \varepsilon & 0 & \dots & 0 \\ 0 & * & * & \cdots & * \\ \vdots & \vdots & \ddots & \\ 0 & * & * & * & * \end{pmatrix},$$

for $\varepsilon \in \{\pm 1\}$.

For $j \in \{1, \ldots, n\}$, let $V_j \cong \mathbb{Z}^{n-1}$ be the subgroup generated by

$$\{e_{ij} : 1 \le i \le n, i \ne j\};$$

for instance, V_1 is the set of matrices of the form

$$\left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ * & 1 & \dots & 0 \\ \vdots & & \ddots & \\ * & 0 & \dots & 1 \end{array}\right).$$

Lemma 7 The normalizer of V_j in $SL_n(\mathbb{Z})$ is the subgroup G_j of all matrices in $SL_n(\mathbb{Z})$ with εe_j as j-th row for $\varepsilon \in \{\pm 1\}$.

Thus, for instance, the normalizer G_1 of V_1 is the group of all matrices

$$\begin{pmatrix} \varepsilon & 0 & \cdots & 0 \\ * & & & \\ \vdots & A & \\ * & & & \end{pmatrix},$$

where $A \in GL_{n-1}(\mathbb{Z})$ and $\varepsilon = \det A$.

Up to a subgroup of index two, G_j is isomorphic to the semi-direct product $SL_{n-1}(\mathbb{Z}) \ltimes \mathbb{Z}^{n-1}$ for the natural action of $SL_{n-1}(\mathbb{Z})$ on \mathbb{Z}^{n-1} .

We will have also to consider the transpose subgroups V_i^t generated by

$$\{e_{ij} : 1 \le j \le n, j \ne i\}.$$

Observe that $V_j \cap V_i^t$ is the copy of \mathbb{Z} generated by e_{ij} for $i \neq j$. The normalizer of V_i^t in $SL_n(\mathbb{Z})$ is of course the group G_i^t . Observe also that

$$V_j \subset G_i^t$$
 and $V_i^t \subset G_j$

for all $i \neq j$.

We will refer to subgroups of the form V_j and V_i^t as to the copies of \mathbb{Z}^{n-1} inside $SL_n(\mathbb{Z})$.

4 Proof of Theorem 3: A preliminary reduction

The starting point of the proof of Theorem 3 is the following classification from [Burg91, Proposition 9] of the measures on the *n*-dimensional torus \mathbb{T}^n which are invariant under the natural action of $SL_n(\mathbb{Z})$; for a more elementary proof in the case n = 2, see [DaKe79].

Lemma 8 ([Bur]) Let $n \ge 2$ be an integer. Let μ be a $SL_n(\mathbb{Z})$ -invariant ergodic probability measure on the Borel subsets of \mathbb{T}^n . Then either μ is concentated on a finite $SL_n(\mathbb{Z})$ -orbit or μ is the normalized Lebesgue measure on \mathbb{T}^n .

Recall that a point $x \in \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ has a finite $SL_n(\mathbb{Z})$ -orbit if and only if $x \in \mathbb{Q}^n / \mathbb{Z}^n$.

Let $n \geq 3$ and let

$$\varphi: SL_n(\mathbb{Z}) \to \mathbb{C}$$

be an indecomposable central positive definite function on $SL_n(\mathbb{Z})$, fixed throughout the proof.

As in Section 2, let π and ρ be the corresponding commuting factor representations of Γ on the Hibert space \mathcal{H} with cyclic vector ξ such that

$$\varphi(\gamma) = \langle \pi(\gamma)\xi, \xi \rangle = \langle \rho(\gamma^{-1})\xi, \xi \rangle, \quad \text{for all} \quad \gamma \in \Gamma.$$

Fix any copy $V = V_j$ or $V = V_j^t$ of \mathbb{Z}^{n-1} inside $SL_n(\mathbb{Z})$ and consider the restriction $\varphi|_V$ to V.

As φ is central, $\varphi|_{V}$ is a *G*-invariant positive definite function on *V*, where

$$G = G_j$$
 or $G = G_j^t$

is the normalizer of V in $SL_n(\mathbb{Z})$. Since G contains a copy of the semi-direct product $SL_{n-1}(\mathbb{Z}) \ltimes \mathbb{Z}^{n-1}$ (for the usual action in case $V = V_j$ and for the inverse transpose of the usual action in case $V = V_j^t$), we have

$$\varphi(Ax) = \varphi(x)$$
 for all $x \in \mathbb{Z}^{n-1}$, $A \in SL_{n-1}(\mathbb{Z})$.

Thus, by Bochner's theorem, $\varphi|_V$ is the Fourier transform of a $SL_{n-1}(\mathbb{Z})$ -invariant probability measure on the torus

$$\mathbb{T}^{n-1} \cong \widehat{V}.$$

Let $(\mathcal{O}_i)_{i\geq 1}$ denote the sequence of finite $SL_{n-1}(\mathbb{Z})$ -orbits in \mathbb{T}^{n-1} . For each $i \geq 1$, denote by $\mu_{\mathcal{O}_i}$ the uniform distribution on \mathcal{O}_i , that is, the probability measure

$$\mu_{\mathcal{O}_i} = \frac{1}{|\mathcal{O}_i|} \sum_{\chi \in \mathcal{O}_i} \delta_{\chi}$$

on \mathbb{T}^{n-1} . Lemma 8 shows that μ has a decomposition as a convex combination

$$\mu = t_{\infty}^{(V)} \mu_{\infty} + \sum_{i \ge 1} t_i^{(V)} \mu_{\mathcal{O}_i} \qquad \text{with} \qquad t_{\infty}^{(V)} + \sum_{i \ge 1} t_i^{(V)} = 1, \ t_{\infty}^{(V)} \ge 0, \ t_i^{(V)} \ge 0,$$

where μ_{∞} is the normalized Lebesgue measure on \mathbb{T}^{n-1} . Thus, we obtain a corresponding decomposition of $\varphi|_{V}$

$$\varphi\big|_{V} = t_{\infty}^{(V)} \delta_{e} + \sum_{i \ge 1} t_{i}^{(V)} \psi_{\mathcal{O}_{i}} \qquad \text{with} \qquad t_{\infty}^{(V)} + \sum_{i \ge 1} t_{i}^{(V)} = 1, \ t_{\infty}^{(V)} \ge 0, \ t_{i}^{(V)} \ge 0,$$

where $\psi_{\mathcal{O}_i}$ is the Fourier transform of the measure $\mu_{\mathcal{O}_i}$.

By general theory, we have a corresponding decomposition of \mathcal{H} into a direct sum of $\pi(V)$ -invariant subspaces

$$\mathcal{H}=\mathcal{H}^V_\infty\oplusigoplus_{\chi\in\mathbb{Q}^{n-1}/\mathbb{Z}^{n-1}}\mathcal{H}^V_\chi$$

where \mathcal{H}_{χ}^{V} is the subspace on which V acts according to the character χ , that is,

$$\mathcal{H}_{\chi}^{V} = \{ \eta \in \mathcal{H} \ \pi(v)\eta = \chi(v)\eta \quad \text{for all} \quad v \in V \}$$

and where \mathcal{H}^V_{∞} is a subspace on which $\pi(V)$ is a multiple of the regular representation λ_V of V. Observe that some of these subspaces may be $\{0\}$. Observe also that, since the representation ρ commutes with π , each of the subspaces \mathcal{H}^V_{χ} and \mathcal{H}^V_{∞} is invariant under the whole of $\rho(SL_n(\mathbb{Z}))$.

We claim that we have the following dichotomy.

Lemma 9 We have

- either $\mathcal{H} = \bigoplus_{\chi \in \mathbb{Q}^{n-1}/\mathbb{Z}^{n-1}} \mathcal{H}^V_{\chi}$ for every copy V of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$, or
- $\mathcal{H} = \mathcal{H}^V_{\infty}$ for every copy V of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$.

Proof Let V be a copy of \mathbb{Z}^{n-1} with $\mathcal{H}^V_{\infty} \neq \{0\}$. We will show that

$$\mathcal{H} = \mathcal{H}^W_{\infty}$$
 for every copy W of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$

Clearly, this will prove the lemma.

• First step: Let W be a copy of \mathbb{Z}^{n-1} for which we assume that $V \cap W \neq \{0\}$. We claim that $\mathcal{H}^V_{\infty} = \mathcal{H}^W_{\infty}$.

Indeed, $V \cap W$ is the copy of \mathbb{Z} generated by the appropriate elementary matrix. We have two decompositions of \mathcal{H} :

$$\mathcal{H} = \mathcal{H}^V_{\infty} \oplus \bigoplus_{\chi \in \mathbb{Q}^{n-1}/\mathbb{Z}^{n-1}} \mathcal{H}^V_{\chi} \quad \text{and} \quad \mathcal{H} = \mathcal{H}^W_{\infty} \oplus \bigoplus_{\chi \in \mathbb{Q}^{n-1}/\mathbb{Z}^{n-1}} \mathcal{H}^W_{\chi}.$$

Consider the restriction of π to $V \cap W$. Each one of the subspaces

$$\bigoplus_{\chi \in \mathbb{Q}^{n-1}/\mathbb{Z}^{n-1}} \mathcal{H}^V_{\chi} \quad \text{and} \quad \bigoplus_{\chi \in \mathbb{Q}^{n-1}/\mathbb{Z}^{n-1}} \mathcal{H}^W_{\chi}$$

has a decomposition into a direct sum of subspaces under which $\pi(V \cap W)$ acts according to a character of $V \cap W$.

On the other hand, the representation $\pi|_{V\cap W}$ restricted to \mathcal{H}^V_{∞} or to \mathcal{H}^W_{∞} is a multiple of the regular representation $\lambda_{V\cap W}$, since $\lambda_V|_{V\cap W}$ and $\lambda_w|_{V\cap W}$ are multiples of $\lambda_{V\cap W}$. It follows that we necessarily have $\mathcal{H}^V_{\infty} = \mathcal{H}^W_{\infty}$.

• Second step: Let W be now an arbitrary copy of \mathbb{Z}^{n-1} . We claim that we still have $\mathcal{H}^V_{\infty} = \mathcal{H}^W_{\infty}$.

Indeed, as is readily verified, we can find two copies W^1 and W^2 of \mathbb{Z}^{n-1} with

 $V \cap W^1 \neq \{0\}, \quad W^1 \cap W^2 \neq \{0\}, \text{ and } W^2 \cap W \neq \{0\}.$

Therefore, by the first step, we have

$$\mathcal{H}^V_\infty = \mathcal{H}^{W^1}_\infty, \quad \mathcal{H}^{W^1}_\infty = \mathcal{H}^{W^2}_\infty \qquad \mathcal{H}^{W^2}_\infty = \mathcal{H}^W_\infty,$$

so that $\mathcal{H}^V_{\infty} = \mathcal{H}^W_{\infty}$.

• Third step: We claim that $\mathcal{H}^V_{\infty} = \mathcal{H}$. Indeed, by the second step, we have

$$\mathcal{H}^V_{\infty} = \mathcal{H}^W_{\infty}$$
 for every copy W of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$..

Since \mathcal{H}_{∞}^{W} is invariant under $\pi(W)$, it follows that \mathcal{H}_{∞}^{V} is invariant under $\pi(SL_{n}(\mathbb{Z}))$.

On the other hand, \mathcal{H}_{∞}^{V} is also invariant under $\rho(SL_{n}(\mathbb{Z}))$. Since π is a factor representation and since $\mathcal{H}_{\infty}^{V} \neq \{0\}$, the claim follows.

We have to consider separately the two possible decompositions of \mathcal{H} given by the previous lemma. We will see that the first one corresponds to a character of a congruence quotient, and that the second one to a character induced from the centre.

5 Proof of Theorem 3: First case

With the notation from the last section, we assume in this section that

$$\mathcal{H} = \bigoplus_{\chi \in \mathbb{Q}^{n-1}/\mathbb{Z}^{n-1}} \mathcal{H}_{\chi}^{V} \quad \text{for every copy } V \text{ of } \mathbb{Z}^{n-1} \text{ in } SL_{n}(\mathbb{Z}).$$

We claim that there exists some integer $N \ge 1$ such that π is trivial on the congruence normal subgroup

$$\Gamma(N) = \{ \gamma \in SL_n(\mathbb{Z}) : \gamma \equiv I \mod N \}.$$

Let $\gamma_0, \gamma_1, \ldots, \gamma_d$ denote the elementary matrices in $SL_n(\mathbb{Z})$, where d = n(n-1) - 1.

For every $k \in \{0, \ldots, d\}$, we have a decomposition

$$\mathcal{H} = igoplus_{lpha \in \mathbb{Q}/\mathbb{Z}} \mathcal{H}_{lpha}^{\gamma_k}$$

of \mathcal{H} under the action of the unitary operator $\pi(\gamma_k)$, where $\mathcal{H}^{\gamma_k}_{\alpha}$ is the eigenspace (possibly equal to $\{0\}$) of $\pi(\gamma_k)$ corresponding to α .

Lemma 10 There exists an integer $N \ge 1$ such that $\pi(\gamma_0^N), \pi(\gamma_1^N), \ldots, \pi(\gamma_d^N)$ have a non-zero common invariant vector in \mathcal{H} .

Let M be the factor generated by $\pi(\Gamma)$ and denote by τ the trace Proof on M defined by φ .

Write the elements in \mathbb{Q}/\mathbb{Z} as a sequence $\{\alpha_i\}_{i\geq 1}$. For every $i\geq 1$, let

$$p_i: \mathcal{H} \to \mathcal{H}_{\alpha_i}^{\gamma_0}$$

denote the orthogonal projection onto $\mathcal{H}_{\alpha_i}^{\gamma_0}$. Observe that $p_i \in M$ (in fact, p_i belongs to the abelian von Neumann algebra generated by $\pi(\gamma_0)$). We have $\tau(p_i) \in [0, 1]$ and $\sum_{i \ge 1} \tau(p_i) = 1$, since $\sum_{i \ge 1} p_i = I$, Let ε be a real number with

$$0 < \varepsilon < 1/2^d.$$

There exists $i_0 \geq 1$ such that

$$\sum_{i=1}^{i_0} \tau(p_i) \ge 1 - \varepsilon.$$

Since elements in \mathbb{Q}/\mathbb{Z} have finite order, we can find an integer $N \geq 1$ such that

$$\alpha_i^N = 1 \qquad \text{for all} \quad i \in \{1, \dots, i_0\}.$$

Then $\pi(\gamma_0^N)$ acts as the identity on

$$\bigoplus_{i=1}^{i_0} \mathcal{H}_{\alpha_i}^{\gamma_0}$$

For $l \in \{0, 1, \ldots, d\}$, let $\mathcal{H}^{\gamma_l^N}$ be the subspace of $\pi(\gamma_l^N)$ -invariant vectors in \mathcal{H} . We claim that

$$\mathcal{H}^{\gamma_0^N} \cap \mathcal{H}^{\gamma_1^N} \cap \dots \cap \mathcal{H}^{\gamma_d^N} \neq \{0\}.$$

For every $k \in \{0, 1, ..., d\}$, let q_k denote the orthogonal projection onto

$$\mathcal{H}^{\gamma_0^N} \cap \mathcal{H}^{\gamma_1^N} \cap \cdots \cap \mathcal{H}^{\gamma_k^N}.$$

It is clear that $q_k \in M$.

We claim that

(1)
$$\tau(q_k) \ge 1 - 2^k \varepsilon$$
 for all $k = 0, 1, \dots, d$.

Once proved, this will imply that

$$\tau(q_d) \ge 1 - 2^d \varepsilon > 0,$$

and hence $q_d \neq 0$ since τ is faithful on M; this will finish the proof of the lemma.

To prove (1), we proceed by induction on k. Since

$$\bigoplus_{i=1}^{i_0} \mathcal{H}_{\alpha_i}^{\gamma_0} \subset \mathcal{H}^{\gamma_0^N},$$

we have $q_0 \geq \sum_{i=1}^{i_0} p_i$. Hence,

$$\tau(q_0) \ge \sum_{i=1}^{i_0} \tau(p_i) \ge 1 - \varepsilon,$$

and this proves (1) in the case k = 0.

Let $k \ge 1$ and assume that

(2)
$$\tau(q_{k-1}) \ge 1 - 2^{k-1}\varepsilon$$

Set

$$\mathcal{K} = \mathcal{H}^{\gamma_0^N} \cap \mathcal{H}^{\gamma_1^N} \cap \dots \cap \mathcal{H}^{\gamma_{k-1}^N}$$

and set $q = q_{k-1}$, the orthogonal projection on \mathcal{K} .

Since any two elementary matrices are conjugate, we have $\gamma_k = s\gamma_0 s^{-1}$ for some element $s \in SL_n(\mathbb{Z})$. Observe that

$$\mathcal{H}^{\gamma_k^N} = \pi(s)\mathcal{H}^{\gamma_0^N}$$

.

Consider the operator

$$T = (1 - q)\pi(s^{-1})q$$

on \mathcal{H} . Observe that $T \in M$. For $\eta \in \mathcal{H}$, we have $T(\eta) = 0$ if and only if $\pi(s^{-1})q(\eta) \in \mathcal{K}$, that is, if and only $q(\eta) \in \pi(s)\mathcal{K}$. Hence

(3)
$$\operatorname{Ker} T = (\mathcal{K} \cap \pi(s)\mathcal{K}) \oplus \mathcal{K}^{\perp}.$$

Let

 $p_{\operatorname{Ker} T}: \mathcal{H} \to \operatorname{Ker} T$

be the orthogonal projection on Ker T. Then $p_{\text{Ker }T} \in M$, since $T \in M$. Moreover, since the range of T is contained in \mathcal{K}^{\perp} , we have

$$\tau(1-q) \ge \tau(I) - \tau(p_{\operatorname{Ker} T}) = 1 - \tau(p_{\operatorname{Ker} T})$$

Hence, by (2),

(4)
$$\tau(p_{\operatorname{Ker} T}) \ge 1 - 2^{k-1}\varepsilon.$$

We have, by (3)

$$\tau(p_{\operatorname{Ker} T}) = \tau(p_{\mathcal{K} \cap \pi(s)\mathcal{K}}) + \tau(1-q)$$

where $p_{\mathcal{K}\cap\pi(s)\mathcal{K}} \in M$ is the orthogonal projection on $\mathcal{K}\cap\pi(s)\mathcal{K}$. Now,

$$\mathcal{K} \cap \pi(s)\mathcal{K} \subset \mathcal{K} \cap \pi(s)\mathcal{H}^{\gamma_0^N} = \mathcal{K} \cap \mathcal{H}^{\gamma_k^N}.$$

Since q_k is the orthogonal projection on $\mathcal{K} \cap \mathcal{H}^{\gamma_k^N}$, it follows in view of (2) and (4) that

$$\tau(q_k) \geq \tau(p_{\mathcal{K}\cap\pi(s)\mathcal{K}})$$

= $\tau(p_{\mathrm{Ker}\,T}) - (1 - \tau(q))$
$$\geq (1 - 2^{k-1}\varepsilon) - 2^{k-1}\varepsilon = 1 - 2^k\varepsilon.$$

This proves the claim (1) and finishes the proof of the lemma. \blacksquare

Corollary 11 Under the assumption made at the beginning of this section, there exists an irreducible representation π_0 of the congruence quotient

$$SL_n(\mathbb{Z})/\Gamma(N^2) \cong SL_n(\mathbb{Z}/N^2\mathbb{Z})$$

such that φ is the (normalized) character of π_0 lifted to $SL_n(\mathbb{Z})$, where N is as in Lemma 10.

Proof By the previous lemma, the subspace \mathcal{K} of the common invariant vectors under $\pi(\gamma_0^N), \pi(\gamma_1^N), \ldots, \pi(\gamma_d^N)$ is non-zero. Let Γ be the subgroup of $SL_n(\mathbb{Z})$ generated by

$$\{\gamma_0^N, \gamma_1^N, \dots, \gamma_d^N\}.$$

By [Tits76, Proposition 2], Γ contains the congruence normal subgroup $\Gamma(N^2)$. Consider the subspace

$$\mathcal{H}^{\Gamma(N^2)} = \{ \eta \in \mathcal{H} : \pi(\gamma)\eta = \eta \quad \text{for all} \quad \gamma \in \Gamma(N^2) \},\$$

of $\pi(\Gamma(N^2))$ -invariant vectors. Then $\mathcal{H}^{\Gamma(N^2)} \neq \{0\}$ since $\mathcal{K} \subset \mathcal{H}^{\Gamma(N^2)}$. Moreover, $\mathcal{H}^{\Gamma(N^2)}$ is invariant under $\pi(SL_n(\mathbb{Z}))$, as $\Gamma(N^2)$ is normal in $SL_n(\mathbb{Z})$.

On the other hand, $\mathcal{H}^{\Gamma(N^2)}$ is clearly invariant under $\rho(SL_n(\mathbb{Z}))$. It follows that

$$\mathcal{H}^{\Gamma(N^2)}=\mathcal{H}_{N}$$

Hence, π factorizes through the finite group $SL_n(\mathbb{Z})/\Gamma(N^2)$. It follows that \mathcal{H} is finite-dimensional, that π is a equivalent to a multiple $m\pi_0$ of an irreducible representation π_0 of $SL_n(\mathbb{Z})/\Gamma(N^2)$ with $m = \dim(\pi_0)$, and that φ is the normalized character of π_0 .

6 Proof of Theorem 3: Second case

With the notation as in Section 4, we assume now that

$$\mathcal{H} = \mathcal{H}^V_{\infty}$$
 for every copy V of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$.

This is equivalent to:

$$\varphi|_V = \delta_e$$
 for every copy V of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$

Let χ_{φ} be the unitary character of the centre $C = \{\pm I\}$ of $SL_n(\mathbb{Z})$ such that

$$\varphi(z\gamma) = \chi_{\varphi}(z)\varphi(\gamma)$$
 for all $z \in C, \gamma \in SL_n(\mathbb{Z}).$

We claim that

$$\varphi(\gamma) = \begin{cases} 0 & \text{if } \gamma \in SL_n(\mathbb{Z}) \setminus C \\ \chi_{\varphi}(\gamma) & \text{if } \gamma \in C. \end{cases}$$

The following proposition, which is of independent interest, will play a crucial rôle.

Proposition 12 Every matrix $\gamma \in SL_n(\mathbb{Z})$ is conjugate to the product $g_1g_2g_3$ of three matrices of the form

$$g_{1} = \begin{pmatrix} 1 & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & & * \\ 0 & * & \cdots & * \end{pmatrix} \in G_{1}^{t}, \qquad g_{2} = \begin{pmatrix} * & * & \cdots & * \\ \vdots & & * \\ * & * & \cdots & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \in G_{n}$$

and

$$g_3 = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ * & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & 0 & 0 & \cdots & 1 \end{pmatrix} \in V_1$$

Proof

• First step: We first claim that γ is conjugate to a matrix γ_1 with first column of the form $(*, 0, *, 0, \dots, 0)^t$. This is Lemma 1 in [Bren60]. The result is proved by conjugating γ by permutation matrices (with sign ajusted) and by elementary matrices of the type e_{ij} with $1 < i \neq j \leq n$.

So, we can assume that the first column of γ is of the form $(k, 0, l, 0, \dots, 0)^t$ for $k, l \in \mathbb{Z}$.

• Second step: There exists a matrix $\gamma_1 \in G_n$ such that the first column of $\gamma_1 \gamma$ is $(k, 1, l, 0, \ldots, 0)^t$. Indeed, since gcd(k, l) = 1, there exist $p, q \in \mathbb{Z}$ such that pk + ql = 1. We can take

$$\gamma_1 = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ p & 1 & q & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \in G_n.$$

• Third step: There exists a matrix $\gamma_2 \in G_1^t \cap G_n$ such that the first column of $\gamma_2 \gamma_1 \gamma$ is $(1, 1, l, 0, \ldots, 0)^t$. Indeed, we can take

$$\gamma_2 = \begin{pmatrix} 1 & 1-k & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \in G_n.$$

• Fourth step: There exists a matrix $\gamma_3 \in V_1$ such that the first column of $\gamma_3 \gamma_2 \gamma_1 \gamma$ is $(1, 0, 0, 0, \dots, 0)^t$. Indeed, we can take

$$\gamma_3 = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ -l & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \in V_1$$

By the last step, $\gamma_4 = \gamma_3 \gamma_2 \gamma_1 \gamma \in G_1^t$. We have

$$\gamma_4 \gamma \gamma_4^{-1} = \gamma_4 (\gamma_1^{-1} \gamma_2^{-1}) \gamma_3^{-1}.$$

The claim follows, since $\gamma_1^{-1}\gamma_2^{-1} \in G_n$ and $\gamma_3^{-1} \in V_1$.

Remark 13 In the case $n \geq 4$, the previous proposition can be improved: every $\gamma \in SL_n(\mathbb{Z})$ is conjugate to a product $g_1g_2 \in G_1^tG_n$. Indeed, in this case, the matrix γ_3 in the fourth step of the proof belongs to G_n and hence

$$\gamma_4 \gamma \gamma_4^{-1} = \gamma_4 (\gamma_1^{-1} \gamma_2^{-1} \gamma_3^{-1}) \in G_1^t G_n.$$

Returning to the proof of Theorem 3, the previous proposition implies that it suffices to show that

$$\varphi(\gamma) = 0$$
 for all $\gamma \in G_1^t G_n V_1$ with $\gamma \notin C$.

For this, several preliminary steps will be needed.

We will use several times the following elementary lemma.

Lemma 14 Let Γ be a group and (π, \mathcal{H}) a unitary representation of Γ . Let $\psi = \langle \pi(\cdot)\xi, \xi \rangle$ be an associated positive definite function such that $\psi = \delta_e$. Then, for every sequence $(g_k)_{k \in \mathbb{N}}$ of pairwise distinct elements $g_k \in \Gamma$, the sequence $(\pi(g_k)\xi)_{k \in \mathbb{N}}$ converges weakly to 0 in \mathcal{H} .

Proof For $k, l \in \mathbb{N}$ with $k \neq l$, we have

$$\langle \pi(g_k)\xi, \pi(g_l)\xi \rangle = \langle \pi(g_l^{-1}g_k)\xi, \xi \rangle = \psi(g_l^{-1}g_k) = 0.$$

Therefore, $(\pi(g_k)\xi)_{k\in\mathbb{N}}$ is an orthonormal sequence in \mathcal{H} and the claim follows.

The first step in this part of the proof of Theorem 3 is to show that

 $\varphi(\gamma) = 0$ for all $\gamma \in G_1^t \cup G_n$ with $\gamma \notin C$.

For elements x, y in a group, let [x, y] denote the commutator $x^{-1}y^{-1}xy$.

Lemma 15 Let V be a copy of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$ and let G be the normalizer of V. Then $\varphi(\gamma) = 0$ for every $\gamma \in G \setminus C$.

Proof Write

$$V = \mathbb{Z}x_1 \oplus \cdots \oplus \mathbb{Z}x_n$$

where x_1, \ldots, x_n are the elementary matrices contained in V.

Let $\gamma \in G \setminus C$. We claim that there exists $i \in \{1, \ldots, n\}$ such that

 $x_i^{-k}\gamma x_i^k \neq x_i^{-l}\gamma x_i^l$ for all $k, l \in \mathbb{Z}, k \neq l$.

Indeed, otherwise there would exist non-zero integers k_i such that γ is in the centralizer of $x_i^{k_i}$ for all $i \in \{1, \ldots, n\}$. This would imply that $\gamma \in C$ (see Lemma 6).

The commutators $[\gamma, x_i^k]$ belong to V and are pairwise distinct. Hence, by Lemma 14, the sequence $(\pi([\gamma, x_i^k])\xi)_{k\in\mathbb{N}}$ is weakly convergent to 0 in \mathcal{H} . For $k \in \mathbb{N}$, we have

$$\begin{aligned} \varphi(\gamma) &= \varphi(x_i^{-k}\gamma x_i^k) \\ &= \varphi(\gamma[\gamma, x_k]) \\ &= \langle \pi([\gamma, x_i^k])\xi, \pi(\gamma^{-1})\xi \rangle. \end{aligned}$$

Hence,

$$\varphi(\gamma) = \lim_{k} \langle \pi([\gamma, x_i^k])\xi, \pi(\gamma^{-1})\xi \rangle = 0,$$

as claimed. \blacksquare

The next step is to show that

$$\varphi(\gamma) = 0$$
 for all $\gamma \in G_1^t G_n$ with $\gamma \notin C$.

Lemma 16 Let V, W be two copies of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$ with $V \cap W \neq \{0\}$. Let G, H be the normalizers of V and W, respectively. Let $\gamma = gh$ with $g \in G$, $h \in H$, and $\gamma \notin C$. Then $\varphi(\gamma) = 0$. **Proof** If $g \in C$ or $h \in C$, then $\gamma \in G$ or $\gamma \in H$ and then $\varphi(\gamma) = 0$, by Lemma 15. Hence, we can assume that $g \notin C$ and $h \notin C$.

Let x denote the elementary matrix such that

$$V \cap W = \langle x \rangle.$$

It is readily verified that, for $k \in \mathbb{Z} \setminus \{0\}$, the centralizer of x^k is contained in $G \cap H$. Hence, we can assume that γ does not belong to this centralizer, that is, that the elements $x^{-k}\gamma x^k$ are pairwise distinct.

We have

$$x^{-k}\gamma x^{k} = x^{-k}gx^{k}x^{-k}hx^{k} = g[g, x^{k}]x^{-k}hx^{k},$$

Set $y_k = [g, x^k] x^{-k} h x^k$. Observe that $V \subset G \cap H$. Since $[g, x^k] \in V$, we have $y_k \in H$. Moreover, the elements y_k are pairwise distinct, since

$$y_k = g^{-1} x^{-k} \gamma x^k.$$

Hence, again by Lemma 14, the sequence $(\pi(y_k)\xi)_{k\in\mathbb{N}}$ is weakly convergent to 0 in \mathcal{H} . As in the previous lemma, it follows that

$$\varphi(\gamma) = \lim_{k} \varphi(x^{-k} \gamma x^{k}) = \lim_{k} \langle \pi(y_{k})\xi, \pi(g^{-1})\xi \rangle = 0. \blacksquare$$

We will also need the following consequence of Lemma 16.

Lemma 17 Let V, W two copies of \mathbb{Z}^{n-1} in $SL_n(\mathbb{Z})$ with $V \cap W \neq \{0\}$. Let G, H be the normalizers of V and W, respectively. Let $(\gamma_k)_{k \in \mathbb{N}}$ be a sequence of pairwise distinct elements in GH. Then $(\pi(\gamma_k)\xi)_{k \in \mathbb{N}}$ converges weakly to 0 in \mathcal{H} .

Proof Observe that $(\pi(\gamma_k)\xi)_{k\in\mathbb{N}}$ is a bounded sequence in \mathcal{H} . Therefore, it suffices to show that every subsequence $(\pi(\gamma_{k_i})\xi)_{i\in\mathbb{N}}$ of $(\pi(\gamma_k)\xi)_{k\in\mathbb{N}}$ has a subsequence which weakly converges to 0.

For $i \in \mathbb{N}$, write $\gamma_{k_i} = g_{k_i} h_{k_i}$ for $g_{k_i} \in G$ and $h_{k_i} \in H$.

Since C is finite and since the elements γ_{k_i} are pairwise distinct, we can find a subsequence of $(\gamma_{k_i})_i$, still denoted by $(\gamma_{k_i})_i$, such that $\gamma_{k_j}^{-1}\gamma_{k_i} \notin C$ for all $i \neq j$. It follows that

$$g_{k_i}^{-1}g_{k_i}h_{k_i}h_{k_i}^{-1} \notin C$$
 for all $i \neq j$.

From Lemma 16, we deduce that, for all $i \neq j$,

$$\varphi(\gamma_{k_j}^{-1}\gamma_{k_i}) = \varphi(h_{k_j}^{-1}g_{k_j}^{-1}g_{k_i}h_{k_i})
= \varphi(g_{k_j}^{-1}g_{k_i}h_{k_i}h_{k_j}^{-1})
= 0,$$

since $g_{k_j}^{-1}g_{k_i} \in G$ and $h_{k_i}h_{k_j}^{-1} \in H$. As in the proof of Lemma 14, this shows that $(\pi(\gamma_{k_i})\xi)_i$ weakly converges to 0.

We can now conclude the proof of Theorem 3. Let $\gamma \in SL_n(\mathbb{Z}) \setminus C$. We want to show that $\varphi(\gamma) = 0$.

By Proposition 12, we can assume that $\gamma = g_1 g_2 g_3$ for matrices of the form

$$g_1 = \begin{pmatrix} 1 & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & & * \\ 0 & * & \cdots & * \end{pmatrix} \in G_1^t , \qquad g_2 = \begin{pmatrix} * & * & \cdots & * \\ \vdots & & * \\ * & * & \cdots & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \in G_n$$

and

$$g_3 = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ a_2 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_n & 0 & 0 & \cdots & 1 \end{pmatrix} \in V_1.$$

If $g_3 \in G_n$, then γ is a non-central element in $G_1^t G_n$, and it follows from Lemma 16 that $\varphi(\gamma) = 0$. We can therefore assume that $g_3 \notin G_n$, that is, $a_n \neq 0$.

Let x be the elementary matrix $e_{2,n}$, thus

$$x = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Then $x \in G_1^t \cap G_n$ and the centralizer of every power x^k for $k \neq 0$ is contained in G_n . Hence, if γ is contained in the centralizer of some power x^k for $k \neq 0$, the claim follows from Lemma 15. We can therefore assume that

$$x^{-k}\gamma x^k \neq x^{-l}\gamma x^l$$
 for all $k \neq l$.

We compute that

$$x^{-k}g_3x^k = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ a_2 + ka_n & 1 & 0 & \cdots & 0 \\ a_3 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_n & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Hence $x^{-k}g_3x^k = \alpha_k\beta$, where

$$\alpha_k = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ ka_n & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ a_2 & 1 & 0 & \cdots & 0 \\ a_3 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_n & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Observe that $\alpha_k \in G_n$ for every k. We have

$$\begin{aligned} x^{-k}\gamma x^k &= x^{-k}g_1g_2g_3x^k \\ &= (x^{-k}g_1x^k)(x^{-k}g_2x^k)(x^{-k}g_3x^k) \\ &= (x^{-k}g_1x^k)(x^{-k}g_2x^k)\alpha_k\beta. \end{aligned}$$

Now, since $x \in G_1^t \cap G_n$, we have $x^{-k}g_1x^k \in G_1^t$ and $x^{-k}g_2x^k\alpha_k \in G_n$. It follows that

 $x^{-k}\gamma x^k\beta^{-1} \in G_1^tG_n$ for every k.

 Set

$$\gamma_k = x^{-k} \gamma x^k \beta^{-1}.$$

Since γ is not in the centralizer of x^k , we have $\gamma_k \neq \gamma_l$ for all $k \neq l$. Hence, by Lemma 17, the sequence $(\pi(\gamma_k))_{k \in \mathbb{N}}$ converges weakly to 0. It follows that

$$\varphi(\gamma) = \lim_{k} \varphi(\beta x^{-k} \gamma x^{k} \beta^{-1})$$

=
$$\lim_{k} \varphi(\beta \gamma_{k})$$

=
$$\lim_{k} \langle \pi(\beta \gamma_{k}) \xi, \xi \rangle$$

=
$$\lim_{k} \langle \pi(\gamma_{k}) \xi, \pi(\beta^{-1}) \xi \rangle$$

= 0.

This concludes the proof of Theorem 3. \blacksquare

7 Deducing Theorem 1 from Theorem 3

Let $\Gamma = SL_n(\mathbb{Z})$ for $n \geq 3$. Let M be a finite factor, with trace τ , and let $\pi : \Gamma \to U(M)$ be a group homomorphism such that $\pi(\Gamma)'' = M$. Then $\varphi = \tau \circ \pi$ is a character of Γ .

Assume that M is finite dimensional. Let $\pi_{\varphi} : \Gamma \to U(M_{\varphi})$ be the finite factor representation associated to φ (see Section 2). The mapping $\pi_{\varphi}(\gamma) \mapsto \pi(\gamma)$ extends to an isomorphism $M_{\varphi} \to M$ of von Neumann algebras. Hence M_{φ} is finite dimensional and, by Theorem 3, φ is the character of an irreducible finite dimensional representation of some congruence quotient $SL_n(\mathbb{Z}/N\mathbb{Z})$ for $N \geq 1$. It follows that π factorizes through $SL_n(\mathbb{Z}/N\mathbb{Z})$.

Assume now that M is infinite dimensional. By Theorem 3, we have $\varphi = \tilde{\chi}$ for a character χ of the centre C. If n is odd, let $\Lambda = \Gamma$ and, if n is even, let $\Lambda = \Gamma(N)$ be a congruence subgroup for $N \geq 3$. Then Λ has finite index in Γ and $\Lambda \cap C = \{e\}$. We therefore have $\varphi|_{\Lambda} = \delta_e$. The GNS-representation of Λ corresponding to δ_e is the regular representation λ_{Λ} which generates the von Neumann algebra $L(\Lambda)$. The mapping $\lambda_{\Lambda}(\gamma) \mapsto \pi(\gamma)$ extends to a normal homomorphism $L(\Lambda) \to M$.

Remark 18 Observe that the conclusion in (ii) of Theorem 1 is that $\pi|_{\Lambda}$ extends to $L(\Lambda)$ and not just to $U(L(\Lambda))$. P. de la Harpe pointed out to me that this is a stronger statement: a homomorphism $U(M_1) \to U(M_2)$ between the unitary groups of two finite factors M_1, M_2 does not necessarily extend to an algebra homomorphism $M_1 \to M_2$. As a simple example, take $M_1 = M_2(\mathbb{C})$ and $M_2 = M_4(\mathbb{C}) \cong M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$. The group homomorphism $\pi : U(2) \to U(4), g \mapsto g \otimes g$ does not extend to an algebra homomorphism $M_2(\mathbb{C}) \to M_4(\mathbb{C})$.

8 A question of Kirchberg

A conjecture of Kirchberg [Kirc93, Section 8, (B4)] is:

The full C^* -algebra $C^*(SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z}))$ of the direct product $SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z})$ has a faithful tracial state.

As shown in [Kirc93], this problem is in fact equivalent to a series of outstanding conjectures, among them the following one which was suggested by Connes in [Conn76, page 105]: Every factor of type II_1 with separable predual is a subfactor of the ultrapower R_{ω} of the hyperfinite factor R of type II_1 .

A positive answer to the following question of Kirchberg [Kirc93, Remark 8.2] would imply the conjecture above:

Does $C^*(SL_4(\mathbb{Z}))$ have a faithful tracial state?

Indeed, $SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z})$ embedds as a subgroup of $SL_4(\mathbb{Z})$, for instance, via the mapping

$$SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z}) \ni (\gamma_1, \gamma_2) \to \begin{pmatrix} \gamma_1 & 0\\ 0 & \gamma_2 \end{pmatrix} \in SL_4(\mathbb{Z}).$$

A faithful tracial state on $C^*(SL_4(\mathbb{Z}))$ would give, by restriction, a faithful tracial state on $C^*(SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z}))$.

We proceed to show that the answer to this question is negative. In fact, the following stronger result will be proved. We will consider the copy

$$\Lambda = \left\{ \begin{pmatrix} \gamma & 0 \\ 0 & I \end{pmatrix} : \gamma \in SL_2(\mathbb{Z}) \right\} \cong SL_2(\mathbb{Z})$$

of $SL_2(\mathbb{Z})$ inside $SL_n(\mathbb{Z})$.

Corollary 19 Let $n \geq 3$ and set $\Gamma = SL_n(\mathbb{Z})$. Let φ be a tracial state on $C^*(\Gamma)$. Then $\varphi|_{C^*(\Lambda)}$ is not faithful.

Proof Let π be the cyclic unitary representation of Γ corresponding to φ . By Theorem 3, π decomposes as a direct sum

$$\pi_{\infty} \oplus \bigoplus_i \sigma_i$$
,

where π_{∞} is a multiple of the regular representation λ_{Γ} , and where every representation σ_i factorizes through some congruence quotient $\Gamma/\Gamma(N_i)$.

Let $\operatorname{Rep}_{\operatorname{cong}}(\Gamma)$ denote the set of all unitary representations of Γ which factorize through some congruence quotient. In fact, as a consequence of the positive answer to the congruence subgroup problem, $\operatorname{Rep}_{\operatorname{cong}}(\Gamma)$ coincides with the set of all finite dimensional unitary representations of Γ (see [Bekk99, Proposition 2]). This implies (see, for instance, [Bekk99, Proposition 1]) that

$$\bigcap_{\sigma \in \operatorname{Rep}_{\operatorname{cong}}(\Gamma)} C^* - \operatorname{Ker} \sigma \subset C^* - \operatorname{Ker} \lambda_{\Gamma},$$

where $C^* - \text{Ker } \sigma$ denotes the kernel in $C^*(\Gamma)$ of the extension of a unitary representation σ of Γ .

We consider now the restriction $\pi|_{\Lambda}$ of π to Λ . Observe that

$$\operatorname{Rep}_{\operatorname{cong}}(\Lambda) = \{\sigma|_{\Lambda} : \sigma \in \operatorname{Rep}_{\operatorname{cong}}(\Gamma)\}.$$

Since $C^* - \operatorname{Ker} \lambda_{\Lambda} = C^* - \operatorname{Ker}(\lambda_{\Gamma}|_{\Lambda})$, we have

$$\bigcap_{\sigma \in \operatorname{Rep}_{\operatorname{cong}}(\Lambda)} C^* - \operatorname{Ker} \sigma \subset C^* - \operatorname{Ker} \lambda_{\Lambda},$$

It follows from Selberg's inequality $\lambda_1 \geq 3/16$ (see [Bekk99, Lemma 3]) and from the fact that $SL_2(\mathbb{Z})$ does not have Kazhdan's Property (T) that $\operatorname{Rep}_{\operatorname{cong}}(\Lambda)$ does not separate the points of $C^*(\Lambda)$, that is,

$$\bigcap_{\sigma \in \operatorname{Rep}_{\operatorname{cong}}(\Lambda)} C^* - \operatorname{Ker} \sigma \neq \{0\}.$$

Hence, we have

$$C^* - \operatorname{Ker}(\pi|_{\Lambda}) = C^* - \operatorname{Ker}(\pi_{\infty}|_{\Lambda}) \cap \bigcap_{i} C^* - \operatorname{Ker}(\sigma_{i}|_{\Lambda})$$
$$= C^* - \operatorname{Ker} \lambda_{\Lambda} \cap \bigcap_{i} C^* - \operatorname{Ker}(\sigma_{i}|_{\Lambda})$$
$$\supset C^* - \operatorname{Ker} \lambda_{\Lambda} \cap \bigcap_{\sigma \in \operatorname{Rep}_{\operatorname{cong}}(\Lambda)} C^* - \operatorname{Ker} \sigma$$
$$= \bigcap_{\sigma \in \operatorname{Rep}_{\operatorname{cong}}(\Lambda)} C^* - \operatorname{Ker} \sigma$$

and $C^* - \text{Ker}(\pi|_{\Lambda}) \neq \{0\}$. This clearly implies that $\varphi|_{\Lambda}$ is not faithful.

Remark 20 The previous result does not hold for n = 2. Indeed, as was shown in [Choi80, Corollary 9], $C^*(SL_2(\mathbb{Z}))$ has a faithful trace. In fact a stronger result is proved in [Choi80, Theorem 7]: $C^*(SL_2(\mathbb{Z}))$ is residually finite dimensional, that is, the finite dimensional representations of $SL_2(\mathbb{Z})$ separate the points of $C^*(SL_2(\mathbb{Z}))$.

It is shown in [LuSh04] that other interesting groups have a residually finite dimensional full C^* -algebra; this is, for instance, the case for fundamental groups of surfaces.

9 A remark on semi-finite traces

As mentioned in the introduction, it is conceivable that semi-finite, infinite traces exist on $C^*(PSL_n(\mathbb{Z}))$ for $n \geq 3$. The following result implies that no such trace factorizes through the reduced C^* -algebra $C^*_r(PSL_n(\mathbb{Z}))$ for any integer $n \geq 2$.

Proposition 21 Let G be a connected real semisimple Lie group without compact factors and with trivial centre. Let Γ be a Zariski-dense subgroup of G. Then the tracial state δ_e is, up to a scalar multiple, the unique semi-finite trace on $C_r^*(\Gamma)$. In particular, $C_r^*(\Gamma)$ has no normal factor representation of type II_{∞} .

Proof Let $\varphi : C_r^*(\Gamma)^+ \to [0, \infty]$ be a semi-finite trace on the set of positive elements of $C_r^*(\Gamma)$.

We use an observation from [Rose89, page 583]. It is well-known that there exist a non-zero two-sided ideal \mathfrak{m} , called the ideal of definition of φ , and a linear functional on \mathfrak{m} which coincides with φ on \mathfrak{m}^+ (see [Dix-C^{*}, Proposition 6.1.2]). Now, by [BeCH95], $C_r^*(\Gamma)$ is simple, that is, $C_r^*(\Gamma)$ has no non-trivial two-sided (closed or non-closed) ideals. Hence, $\mathfrak{m} = C_r^*(\Gamma)$ and φ is a finite trace. By [BeCH95], δ_e is the unique tracial state on $C_r^*(\Gamma)$ and the claim follows.

Examples of Zariski dense subgroups Γ of a group G as in the previous proposition include all lattices in G. So Proposition 21 applies, for instance, when $\Gamma = PSL_n(\mathbb{Z})$ for $n \geq 2$ or when Γ is the fundamental group of an oriented compact surface of genus ≥ 2 .

References

- [BaMS67] H. Bass, M. Lazard and J-P. Serre. Sous-groupes d'indice fini dans $SL(n,\mathbb{Z})$. Bull. Amer. Math. Soc. **70**, 385-392 (1964).
- [BeCH95] B. Bekka, M. Cowling and P. de la Harpe. Some groups whose reduced C*-algebra is simple. Publ. Math. IHES 80, 117-134 (1995).
- [Bekk99] B. Bekka. On the full C^{*}-algebras of arithmetic groups and the congruence subgroup problem. *Forum Math.* **11**, 705-715 (1999).

- [Boye83] R.P. Boyer. Infinite traces of AF-algebras and characters of $U(\infty)$. J. Oper. Theory 9, 205-236 (1983).
- [Bren60] J.L. Brenner. The linear homogeneous group, III. Ann. Math. 71, 210-223 (1960).
- [Burg91] M. Burger. Kazhdan constants for $SL(3,\mathbb{Z})$. J. Reine Angew. Math. 413, 36-67 (1991).
- [Choi80] M. D. Choi. The full C*-algebra of the free group on two generators. Pac. J. Math. 87, 41-48 (1980).
- [Conn76] A. Connes. Classification of injective factors., Ann. Math. 104, 73-115 (1976).
- [Conn80] A. Connes. A factor of type II_1 with countable fundamental group. J. Operator Theory, 4: 151–153, 1980.
- [CoJo85] A. Connes and V. Jones. Property (T) for von Neumann algebras. Bull. London Math. Soc. 17, 51-62 (1985).
- [CoHa89] M. Cowling and U. Haagerup. Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. *Invent. Math.*, 96:507–542, 1989.
- [DaKe79] S.G. Dani and M. Keane. Ergodic invariant measures for action of SL(2, Z). Ann. Inst. Henri Poincaré 15, Nouv. Sér., Sect. B, 79-84 (1979).
- [Dix-C*] J. Dixmier. Les C*-algèbres et leurs représentations. Gauthier-Villars, 1969.
- [Dix-vN] J. Dixmier. Les algèbres d'opérateurs dans l'espace Hilbertien. Gauthier-Villars, 1969.
- [Furm99] A. Furman. Orbit equivalence rigidity. Ann. Math., 150:1083– 1108, 1999.
- [Harp79] P. de la Harpe Simplicity of the projective unitary groups defined by simple factors. Comment. Math. Helv. 54, 334–345 (1979).

- [Jone00] V. Jones. Ten problems. In: Mathematics: Frontiers and perspectives. Ed: V. Arnold et al., pages 79-91. American Mathematical Society, 2000.
- [Kirc93] E. Kirchberg. On non-split extensions, tensor products and exactness of group C^* -algebras. *Invent. Math.* **112**, 449–489 (1993).
- [Kiri65] A. A. Kirillov. Positive definite functions on a group of matrices with elements from a discrete field. *Soviet. Math. Dokl.* 6, 707-709 (1965).
- [LuSh04] A. Lubotzky and Y. Shalom. Finite representations in the unitary dual and Ramanujan groups. In: "Discrete geometric analysis", Proceedings of the 1st JAMS symposium, Sendai, 2002. Contemporary Mathematics 347, 173-189 (2004).
- [Marg91] G.A. Margulis. Discrete subgroups of semisimple Lie groups, Springer-Verlag, 1991.
- [Menn65] J. L. Mennicke. Finite factor groups of the unimodular group. Ann. Math. 81, 31-37 (1965).
- [Popa06-a] S. Popa. Strong rigidity of II₁ factors arising from malleable actions of w-rigid groups, I. Inventiones Math. 165, 369-408 (2006).
- [Popa06-b] S. Popa. Strong rigidity of II₁ factors arising from malleable actions of w-rigid groups, II. Inventiones Math. 165, 409-452 (2006).
- [Robe93] G. Robertson. Property (T) for II_1 factors and unitary representations of Kazhdan groups. Math. Ann. **296**, 547-555 (1993).
- [Ovci71] S.V. Ovcinnikov. Positive definite functions on Chevalley groups. Funct. Anal. Appl. 5, 79-80 (1971).
- [Rose89] J. Rosenberg. Un complément à un théorème de Kirillov sur les caractères de GL(n) d'un corps infini discret. C. R. Acad.Sc.Paris **309**, Série I, 581-586 (1989).
- [Skud76] H-L. Skudlarek. Die unzerlegbaren Charaktere einiger diskreter Gruppen. Math. Ann. 223, 213-231 (1976).

- [Stei85] R. Steinberg. Some consequences of the elementary relations in SL_n . Contempary Math. 45, 335-350 (1985).
- [StVo75] S. Stratila and D. Voiculescu. Representations of AF-algebras and of the group $U(\infty)$. Lecture Notes in Mathematics **486**, Springer, 1975.
- [Thom64a] E. Thoma. Über unitäre Darstellungen abzählbarer, diskreter Gruppen. Math. Ann. 153, 111-138 (1964).
- [Thom64b] E. Thoma. Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Z. 85, 40-61 (1964).
- [Tits76] J. Tits. Systèmes générateurs de groupes de congruence. C. R. Acad. Sci., Paris, Sér. A, 283, 693-695 (1976).
- [Vaes06] S. Vaes. Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa). Séminaire Bourbaki, Exposé 961, March 2006
- [Vale97] A. Valette. Amenable representations and finite injective von Neumann algebras. *Proc. Amer. Math. Soc.* **125**, 1841-1843 (1997).
- [VerKe81] A.M. Vershik and S.V. Kerov. Characters and factor representations of the infinite symmetric group. Sov. Math. Dokl. 23, 389-392 (1981).
- [Voic76] D. Voiculescu. Représentations factorielles de type II_1 de $U(\infty)$. J. Math. Pures Appl. IX, Sér. 55, 1-20 (1976).
- [Zele81] A. V. Zelevinsky. Representations of finite classical groups. A Hopf algebra approach. Lecture Notes in Mathematics 869, Springer, 1981.
- [Zimm84] R.J. Zimmer. Ergodic theory and semisimple groups, Birkhäuser, 1984.

Address

Bachir Bekka, UFR Mathématique, Université de Rennes 1, Campus Beaulieu, F-35042 Rennes Cedex, France

E-mail: bachir.bekka@univ-rennes1.fr