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Abstract

For n > 3, let I' = SL,,(Z). We prove the following superridigity
result for ' in the context of operator algebras. Let L(I') be the von
Neumann algebra generated by the left regular representation of I
Let M be a finite factor and let U(M) be its unitary group. Let
m: ' — U(M) be a group homomorphism such that =(I")” = M.
Then either

(i) M is finite dimensional, or

(ii) there exists a subgroup of finite index A of I' such that 7|z
extends to a homomorphism U(L(A)) — U(M).

This answers, in the special case of SL,(Z), a question of A. Connes
discussed in [Jone00, Page 86]. The result is deduced from a complete
description of the tracial states on the full C*-algebra of T'.

As another application, we show that the full C*—algebra of I' has
no faithful tracial state, thus answering a question of E. Kirchberg.

1 Introduction

Two major achievements in the study of discrete subgroups in semi-simple Lie
groups are Mostow’s ridigity theorem and Margulis’ superrigidity theorem.
A weak version of the latter is as follows. Let I' be a lattice in a simple
real Lie group G with finite centre and with R — rank(G) > 2. Let H be
another simple real Lie group with finite centre, and let 7 : I' — H be
a homomorphism such that 7 (") is Zariski-dense in H. Then, either H is



compact or there exists a finite index subgroup A of I such that 7|, extends to
a continuous homomorphism G — H. For more general results, see [Marg91]
and [Zimm84]. Moreover, as shown by Corlette, the superridity theorem
continues to hold for the simple real Lie groups G with R — rank(G) = 1
which are not locally isomorphic to SO(n,1) or SU(n,1).

In the theory of von Neumann algebras, discrete groups (as well as their
actions) always played a prominent role. To a discrete group I is associated a
distinguished von Neumann algebra L(I'), namely the von Neumann algebra
generated by the left regular representation Ar of I'; thus, L(I") is the closure
for the strong operator topology of the linear span of {Ar(vy) : v € I'} in
the algebra L£(¢?(T")) of all bounded operators on the Hilbert space ¢*(T').

The first rigidity result in the context of operator algebras is the result
by A. Connes [Conn80] showing that, for a group I' with Kazhdan’s Prop-
erty (T), the group of outer automorphisms of L(I") is countable. A major
problem in this area is whether such a group I' can be reconstructed from
its von Neumann algebra L(T"). In recent years, a series of remarkable results
concerning this question, with applications to ergodic theory, have been ob-
tained by S. Popa ([Popa06-a], [Popa06-b]; for an account, see [Vaes06]).
Other relevant work includes [CoHa89] and [Furm99].

The purpose of this paper is to discuss another kind of rigidity, namely
the rigidity of a discrete group in the unitary group of its von Neumann
algebra. If ' is a discrete group, we view I' as a subgroup of the unitary
group U(L(T")) of L(I"), that is, the group of the unitary operators in L(T).
It was suggested by Connes (see [Jone00, Page 86]) that, for I' as in the
statement of Margulis’ theorem, a superrigity result should hold in which G
above is replaced by U(L(I')) and H by the unitary group U(M) of a type
I, factor. We prove such a superrigity result in the case I' = SL,(Z) for
n > 3.

Recall that a von Neumann algebra M is a factor if the centre of M is
reduced to the scalar operators. The von Neumann algebra M is said to be
finite if there exists a finite normal faithful trace on M. A finite factor is
a type Il factor which is infinite dimensional. Recall also that L(I') is a
finite von Neumann algebra. Moreover, L(I") is a factor if and only if I" is an
ICC-group, that is, if all its conjugacy classes, except {e}, are infinite. For
an account on the theory of von Neumann algebras, see [Dix-vN].

Theorem 1 Let ' = SL,(Z) for n > 3. Let M be a finite factor and let
U(M) its unitary group. Let m : I' — U(M) be a group homomorphism.



Assume that the linear span of w(T') in dense in M for the strong operator
topology. Then either

(i) M is finite dimensional, that is, M is isomorphic to a matriz algebra
M, (C) for some n € N, in which case 7 factorizes to a multiple of an
irreducible representation of some congruence quotient SL,(Z/NZ) for
N eN, or

(i1) there exists a subgroup of finite index A of T' such that 7|5 extends to
a normal homomorphism L(A) — M of von Neumann algebras. In
particular, w|p extends to a group homomorphism U(L(A)) — U(M).

Let C be the centre of SL,(Z). Observe that C is trivial for odd n and
C = {£I} for even n. If, in the statement of the theorem above, we take
instead I' = PSL,(Z) = SL,(Z)/C, then L(I') is a factor and the conclusion
(ii) holds for A =T

The method of proof of Theorem 1 can be adapted to establish the same
result when I is the symplectic group Spa, (Z) for n > 2; it works presumably
for the group of integral points of any Chevalley group of rank > 2. No such
result can be true for the modular group SLs(Z); see Remark 4 below.

Remark 2 (i) Let I' be a countable ICC—group with Kazhdan’s Property
(T). It was shown in [CoJo85] that L(I") cannot be a subfactor of L(F3), where
F; is a non-abelian free group. This, combined with Theorem 1, shows that
every representation of PSL,(Z) for n > 3 into U(L(F3)) decomposes as a
direct sum of finite dimensional representations. This is a special case of a
result of G. Robertson [Robe93] valid for all groups with Property (T). For
a related work, see [Vale97].

(ii) Let M be a finite factor. The unitary group U(M) has as centre a copy
of the circle group S, namely the unitary scalar operators. It was shown in
[Harp79] that the projective unitary group U(M)/S* of M is a simple group.

The result in Theorem 1 amounts to the classification of the characters
of T (see Section 7), that is, the functions ¢ : I' — C with the following
properties:

e (o is central, that is, p(yzy™!) = ¢(z) for all v,z € T,

e ¢ is positive definite, that is, > ., c_jcigo(vj’lm-) >0 forall yq,...,7, €
I'and ¢q,...,¢, € C,



e ¢ is normalized, that is, p(e) =1,

e ¢ is indecomposable, that is, ¢ cannot be written in a non-trivial way
as a convex combination of two central positive definite normalized
functions.

There are two obvious examples of characters of a group I'. First of all,
the normalized character (in the usual sense) of an irreducible finite dimen-
sional unitary representations of I' is a character of I' in the above sense.
For I' = SL,(Z), n > 3, it is well-known that every such representation
factorizes through some congruence quotient SL,,(Z/NZ) for an integer N’
this a consequence of the solution of the congruence subgroup problem (see
[BaMS67], [Menn65]; see also [Stei85]). Much is known about the characters
of the finite groups SL, (Z/NZ); see [Zele81].

Let C be the centre of the group I'. Assume that all conjugacy classes,
except those of the elements from C| are infinite. Then, for every unitary
character x of the abelian group C, the trivial extension X of x to I', defined
by X =0on I'\ C, is a character of I". In particular, if T" is ICC, then J,, the
Dirac function at e, is a character of I'. When n is even, all conjugacy classes
of PSL,(Z), except {I} and {—I}, are infinite.

Our main result says that SL,(Z) for n > 3 has no characters other than
the obvious ones described above.

Theorem 3 Let ¢ be a character of SL,(Z) for n > 3. Then, either

(i) @ is the character of an irreducible finite dimensional representation of
some congruence quotient SL,(Z/NZ) for N > 1, or

(i1) @ is the trivial extension X of a character x of the centre of SL,(7Z)..

Remark 4 No classification of the characters of the modular group SLy(Z)
can be expected. Indeed, this group contains the free non-abelian group
F5 on two generators as normal subgroup. Every character of F, extends
to a character on SLy(Z). Now, F, has a huge number of characters: if
M is any finite factor with trace 7, every pair of unitaries in M defines a
homomorphism 7 : F, — U(M) and a corresponding character 7 o7 on F5.

The problem of the description of the characters of a discrete group
I' has been considered by several authors. E. Thoma [Thom64b] solved



this problem for the infinite symmetric group S, (see also [VerKe81]), H -
L. Skudlarek [Skud76] for the group I' = GL(o0, F), where F is a finite field,
and D. Voiculescu [Voic76] for I' = U(o0); see also [StVoT75] and [Boye83].
A.A. Kirillov [Kiri65] described the characters of I' = G L, (K) or SL, (K) for
n > 2, where K is an infinite field (see also [Rose89] and [Ovci71]).

Our proof of Theorem 3 is based on an analysis of the restriction @[y of
a given character ¢ of SL,(Z) to various copies V of Z"~!. We will see that
we have a dichotomy corresponding to the two different types of characters
from Theorem 3: either the measure on the torus T"~! associated to ¢y is
atomic or this measure is the Lebesgue measure for every V. An important
ingredient in our analysis is the solution of the congruence subgroup for
SL,(Z) for n > 3.

The result of Theorem 3 can be interpreted as a classification of the traces
on the full C*-algebra C*(I") of I' = SL,,(Z) for n > 3 (see Section 2).

E. Kirchberg asked in [Kirc93, Remark 8.2, page 487] whether the full
C*—algebra of SLy(Z) has a faithful trace. He was motivated by the fact
that a positive answer to this question would imply a series of outstanding
conjectures in the theory of von Neumann algebras (see Section 8). As a
consequence of Theorem 3, we will see that the answer to Kirchberg’s question
is negative, namely:

Corollary 5 The full C*—algebra of SL,(Z) has no faithful tracial state for
n > 3.

In fact, we will prove the stronger result Corollary 19 below.

Recall that the reduced C*-algebra C(T") of a group I' is the closure of the
linear span of {\r(y) : v € T'} in L(¢*(T)) for the operator norm. Recall also
that . factorizes to a faithful tracial state on C*(I"). The finite dimensional
representations of PSL,(Z) do not factorize through C}(PSL,(Z)), since
PSL,(Z) is not amenable. As a consequence, Theorem 3 implies that J, is
the unique tracial state on C¥(PSL,(Z)). This also follows from [BeCH95],
where a different method is used.

Theorem 3 leaves open the problem of existence of infinite, semi-finite
traces on C*(SL,(Z)). We do not know whether such traces exist. Using
[BeCH95|, we can only show that no such trace exists on C(PSL,(Z)). In
fact, this result is valid for a more general class of groups including P.SLy(7Z)
(see Proposition 21 below).

This paper is organized as follows. Sections 2 and 3 are devoted to
some general facts. The proof of Theorem 3 is spread over three sections: in
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Section 4, we show that the proof splits into two cases which are then treated
accordingly in Sections 5 and 6. In Section 7, we show that Theorem 1 is a
consequence of Theorem 3. Corollary 5 is proved in Section 8 and Section 9
is devoted to a remark on the problem of the existence of infinite traces.

Acknowlegments We are grateful to S. Popa who pointed out to us Connes’
question from [Jone00] and suggested to emphasize the superrigidity result
Theorem 1. Thanks are also due to E. Blanchard, E. Kirchberg, and P. de
la Harpe, for interesting comments.

2 Factor representations and characters

We review some general facts concerning the relationships between central
positive definite functions on groups and factor representations. Details can
be found in [Dix-C*, Chapters 6 and 17] or [Thom64a].

Let I' be a discrete group. We are interested in representations of I' in
the unitary group of a finite von Neumann algebra.

Recall that a finite trace or a tracial state on a C*—algebra A with unit 1
is a linear functional 7 on A which has the property

T(zy) = 7(yz) for all =,y € A,

which is positive (that is, 7(z*z) > 0 for all x € A), and which is normalized
by 7(1) = 1. The trace 7 is faithful if 7(z*z) # 0 for all x # 0.

Let M be a finite von Neumann algebra, with faithful trace normal 7. Let
m:I'— U(M) be a group homomorphism. The function p =707 :I' - C
has the following properties:

(i) ¢ is central;
(ii) ¢ is positive definite;
(iii) ¢(e) = 1.

Let C'P(I") denote the set of functions ¢ : I' — C with Properties (i), (ii)
and (iii) above.

Ley ¢ € CP(I'). Then there exist a finite von Neumann algebra M,,, with
faithful normal trace 7, and a group homomorphism =, : I' — U(M,,) such
that ¢ = 7, o m,. Indeed, by GNS—construction, there exists a cyclic unitary



representation 7, of I' on a Hilbert space H, with a cyclic unit vector &,
such that

e(7) = (mp(7)ép, &) forall yel.

Since ¢ is central, there exists another unitary representation p, of I' on H,,
which commutes with 7, (that is, 7,(7)p,(7) = pu (7 )7,(7) for all 4,7 € I')
and with the property that

Pe(V)Ep = 77@(’7_1)&0 forall ~ el

Let M, = m,(I')” be the von Neumann subalgebra of £L(H,) generated by

7,(I), where S’ ={T'€ L(H,) : TS =S5T  forall S & S} denotes the
commutant of a subset S of L(H,,). The mapping

T — (TE,, &) for all T € M,

is a faithful normal trace 7, on M, and ¢ = 7, o 7.
Moreover, if N, = p,(I')"” is the von Neumann subalgebra of L(H,)
generated by p,(I"), then

M,=N, and N, =M,

In particular, the common centre of M, and N, is M, N N,,.

As an important example, let ¢ = ., be the Dirac function at the group
unit e. Then ¢ € C'P(T"). The unitary representations m, and p,, associated to
¢ are the left and right regular representations Ar and pr on ¢3(T"). Morever,
M, is the von Neumann algebra L(I") of T".

The set CP(I") is a compact and convex subset of the vector space of
all bounded functions on I', equipped with the weak *-topology. The set
of extremal points E(I') of CP(I") is the set of all indecomposable central
positive definite functions on I'. By Choquet theory, every ¢ € C'P(I') may
be written as a integral

p=[ Pduy)
E(T)
for a probability measure p on E(I'), at least when G is countable. For
¢ € CP(I'), we have that M, is a factor if and only if ¢ € E(I'). As an
example, the Dirac function . belongs to F(I') if and only if ' is an ICC
group.

Let M be a finite von Neumann algebra, with faithful normal trace 7,

and let 7 : I' — U(M) be a homomophism such that 7(I')” = M. Observe
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that, if we set ¢ = 7o € CP(I"), then, with the notation above, the map-
ping m,(y) +— m(7y) extends to an isomorphism M, — M of von Neumann
algebras.

A homomorphism 7 : I' — U(M) for a finite factor M such that =(I")" =
M will be called a finite factor representation of I'. We say that two such
representations m : I' — U(M;) and 7y : I' — U(Ms) are quasi-equivalent if
there exists an isomorphism ® : M; — M, such that ®(m(v)) = ma(y) for
all v € I'. Summarizing the discussion above, we see that F(I") classifies the
finite factor representations of I', up to quasi-equivalence.

The set E(I") parametrizes also the indecomposable traces on the full C*-
algebra of I'. Recall that the full C*-algebra C*(T") of T" is the C*-algebra with
the universal property that every unitary representation of I' on a Hilbert
space H extends to a *—homomorphism C*(I') — L(H). The algebra C*(I")
can be realized as completion of the group algebra C[I'] under the norm

Z cyY|| = sup { Z ()

vyerl yel
where Rep(I") denotes the set of (equivalence classes of) cyclic unitary rep-
resentations of I'.

We will view I" as a subgroup of the group of unitaries in C*(I") by means
of the canonical embedding I' — C*(T"). Every trace on C*(T") defines by
restriction to I' an element of C'P(T"). Conversely, every ¢ € C'P(I") extends
to a trace on C*(I'), since, as seen above, p(v) = (7,(7)&,, &,) and 7, is a
unitary representation of I'.

CmE Rep(F)} :

3 Some subgroups of SL,(Z)

Let n is a fixed integer with n > 2. For a pair of integers (i,j) with 1 <
t # j < n, denote by e;; the corresponding elementary matrix, that is, the
(n x n)-matrix with 1’s on the diagonal, 1 at the (i, j)-entry, and 0 elsewhere.
It is well-known that SL,(Z) is generated by

{e;; + 1<i#j<n}

Moreover, for n > 3, any two elementary matrices are conjugate inside
SL,(Z). Indeed, observe that the matrix

Sij = eijej_l-le c SLN(Z)
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permutes the i-th and the j-th standard unit vectors of Z", up to a sign.
Hence, if e and ey, are two elementary matrices, conjugation by a suitable
product of matrices of the form s;; will carry e into ey, or e;ql. Now, e,, and
e;ql are conjugate via a suitable diagonal matrix in SL,,(Z), when n > 3.
The proof of the following two lemmas is by straightforward computation.
We will always view an element a € Z" as column vector. Its transpose a’ is
then a row vector. We denote by ey, ..., e, the standard unit vectors in Z".

Lemma 6 Let k be a non-zero integer and let 1,5 € {1,...,n} with 1 <i #
J < n. The centralizer of efj in SL,(Z) consists of all matrices with ce; as
i-th column and e} as j-th row for e € {£1}. W

For instance, the centralizer of ef, is the subgroup of all matrices of the form

£ x % *
0 0 0
0 * = *

)

for e € {£1}.
For j € {1,...,n}, let V; 2 Z"! be the subgroup generated by

{eg 1 1<i<nji#j}

for instance, V; is the set of matrices of the form

1 0 ... 0
* 1 ... 0
* 0 ... 1

Lemma 7 The normalizer of V; in SL,(Z) is the subgroup G; of all matrices
in SLy(Z) with ee; as j-th row for e € {£1}. 1
Thus, for instance, the normalizer Gy of V] is the group of all matrices

*



where A € GL,,—1(Z) and ¢ = det A.

Up to a subgroup of index two, G is isomorphic to the semi-direct product
SL,_1(Z) x Z"! for the natural action of SL, 1(Z) on Z"

We will have also to consider the transpose subgroups V;' generated by

{eij + 1<j<n,j#i}

Observe that V;NV;! is the copy of Z generated by e;; for i # j. The normalizer
of V! in SL,(Z) is of course the group G%. Observe also that

V; C Gi and V! CG,

for all 7 # j.
We will refer to subgroups of the form V; and V;' as to the copies of Z"!
inside SL,,(Z).

4 Proof of Theorem 3: A preliminary reduc-
tion

The starting point of the proof of Theorem 3 is the following classification
from [Burg91, Proposition 9] of the measures on the n-dimensional torus T"
which are invariant under the natural action of SL,,(Z); for a more elementary
proof in the case n = 2, see [DaKe79].

Lemma 8 ([Bur]) Let n > 2 be an integer. Let p be a SL,(Z)-invariant
ergodic probability measure on the Borel subsets of T". Then either p is

concentated on a finite S L, (Z)-orbit or u is the normalized Lebesque measure
on T".

Recall that a point € T" = R"/Z" has a finite SL,,(Z)—orbit if and only if
xeQr/Z".
Let n > 3 and let
p:SL,(Z) — C

be an indecomposable central positive definite function on SL,(Z), fixed
throughout the proof.

As in Section 2, let 7 and p be the corresponding commuting factor
representations of I' on the Hibert space H with cyclic vector £ such that

p(v) = (r(7)€, & = (p(y )¢, &),  forall yel.
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Fix any copy V = Vj or V. =V} of Z"" inside SL,(Z) and consider the
restriction <p|V to V.
As ¢ is central, gp‘v is a G—-invariant positive definite function on V', where

G=G, o G=G!

is the normalizer of V' in SL,(Z). Since G contains a copy of the semi-direct
product SL,_1(Z) x Z"~* (for the usual action in case V = V; and for the
inverse transpose of the usual action in case V' = V), we have

o(Azx) = p(z) forall xc€Z"' A€ SL, (7).

Thus, by Bochner’s theorem, gp‘v is the Fourier transform of a SL,_(Z)-
invariant probability measure on the torus

™'V,

Let (O;);>1 denote the sequence of finite SL,_1(Z)-orbits in T""!. For each
¢ > 1, denote by pe, the uniform distribution on O;, that is, the probability
measure

xEO

on T"!. Lemma 8 shows that u has a decomposition as a convex combination

= tWpoe + >t 0, with 03 =110 >0, 4 >0,

i>1 i>1

where /i, is the normalized Lebesgue measure on T"~!. Thus, we obtain a
corresponding decomposition of ¢|,,

y =t 00+ 1o, with D+ 6 =140 >0, £ >0,
i>1 i>1

where 1), is the Fourier transform of the measure pe,.
By general theory, we have a corresponding decomposition of ‘H into a
direct sum of 7 (V')-invariant subspaces

H=H.& B "

Xe@n—l/zn—l
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where H;/ is the subspace on which V' acts according to the character y, that
is,

HY ={neH n(vyp=x(v)y forall veV}

and where HY is a subspace on which 7(V) is a multiple of the regular
representation Ay of V. Observe that some of these subspaces may be {0}.
Observe also that, since the representation p commutes with m, each of the
subspaces Hy and HY, is invariant under the whole of p(SLy(Z)).

We claim that we have the following dichotomy.

Lemma 9 We have
o cither H = @XeQn_l/Zn_l H;f for every copy V of Z"' in SL,(Z), or
o H="HY for every copy V of Z"* in SL,(Z).
Proof Let V be a copy of Z"! with HY # {0}. We will show that
H=HY for every copy W of Z" ' in SL,(Z).

Clearly, this will prove the lemma.
e First step: Let W be a copy of Z"~! for which we assume that VNW # {0}.
We claim that HY, = HY.

Indeed, V NW is the copy of Z generated by the appropriate elementary
matrix. We have two decompositions of H :

H=H,o& @B H] ad H=HIe H

Xe@nfl/znfl XEanl/anl

Consider the restriction of m to V' N W. Each one of the subspaces

@ H;/ and @ H;V

Xe@nfl/anl XGQTL*I/ZTL*l

has a decomposition into a direct sum of subspaces under which =(V N W)
acts according to a character of VN W.

On the other hand, the representation 7|y restricted to HZO or to HOVZ
is a multiple of the regular representation Ay, since Ay |yaw and Ay |vaw
are mutiples of Adyqp. It follows that we necessarily have HY = HY .

e Second step: Let W be now an arbitrary copy of Z"~1. We claim that we
still have HY, = HY.
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Indeed, as is readily verified, we can find two copies W' and W? of Z"~!
with

VAWt £{0}, W'nWw?#{0}, and W*NW # {0}.
Therefore, by the first step, we have
HL=HY, WY =HY WY =HY

so that HY, = HY.
e Third step: We claim that HY, = H.
Indeed, by the second step, we have

HY =HY for every copy W of Z" ! in SL,(Z)..

Since HY is invariant under w(W), it follows that HY is invariant under
w(SL,(Z)).

On the other hand, HY. is also invariant under p(SL,(Z)). Since 7 is a
factor representation and since HY, # {0}, the claim follows. B

We have to consider separately the two possible decompositions of H
given by the previous lemma. We will see that the first one corresponds to a
character of a congruence quotient, and that the second one to a character
induced from the centre.

5 Proof of Theorem 3: First case

With the notation from the last section, we assume in this section that

H = GB H}: for every copy V of Z" ' in SL,(7Z).

XGQn_l/Zn_l

We claim that there exists some integer N > 1 such that 7 is trivial on the
congruence normal subgroup

I'(N)={y€ SL,(Z) : v =1 mod N}.
Let 70,71, - - ., 74 denote the elementary matrices in SL,(Z), where d =
nin—1)—1.
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For every k € {0, ..., d}, we have a decomposition

H= P H»

acQ/Z

of H under the action of the unitary operator m(vy), where H2* is the
eigenspace (possibly equal to {0}) of m(~) corresponding to a.

Lemma 10 There exists an integer N > 1 such that (7 ), 7 (), ..., 7(v})
have a non-zero common invariant vector in H.

Proof Let M be the factor generated by «(I') and denote by 7 the trace
on M defined by ¢.

Write the elements in Q/Z as a sequence {o;);>1. For every i > 1, let
pi: H—HY

denote the orthogonal projection onto H7°. Observe that p; € M (in fact, p,
belongs to the abelian von Neumann algebra generated by m(7y)). We have

7(pi) € [0,1] and > o, 7(pi) = 1, since >, pi = 1,
Let € be a real number with

0<e<1/2%

There exists 79 > 1 such that

20
T(p;) > 1—e.
i=1

Since elements in QQ/Z have finite order, we can find an integer N > 1 such
that
N=1 forall ie{l,... i}

@

Then 7(7}’) acts as the identity on
10
P He.
i=1

For 1 € {0,1,...,d}, let H be the subspace of 7(7;¥ )~invariant vectors
in H. We claim that

HO AR N- A HE £ {0}
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For every k € {0,1,...,d}, let g, denote the orthogonal projection onto
HO AR NN HE

It is clear that ¢, € M.
We claim that

(1) 7(q) >1—2F  forall k=0,1,...,d.
Once proved, this will imply that
7(qa) > 1 —2% >0,

and hence ¢g # 0 since 7 is faithful on M; this will finish the proof of the
lemma.
To prove (1), we proceed by induction on k. Since

10
PHe cH,
i=1
we have ¢g > 22021 p;. Hence,

10

7(qo) = ZT(Z%) >1-—¢

i=1

and this proves (1) in the case k = 0.
Let £ > 1 and assume that

(2) T(qe_1) > 1 —28te,

Set
]C:’)—[V(J)V ﬁ’}—p’{v m...ﬂH’Y;ﬁV—l

and set ¢ = g,_1, the orthogonal projection on K.
Since any two elementary matrices are conjugate, we have v, = syps~
for some element s € SL,(Z). Observe that

1

HOR = 7(s)H .

Consider the operator
T=(1-qn(s")g
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on H. Observe that T" € M. For n € H, we have T(n) = 0 if and only if
7(s7Yq(n) € K, that is, if and only ¢(n) € m(s)K. Hence

(3) KerT = (KN7(s)K) © K+

Let
PKerT - H — KerT

be the orthogonal projection on KerT. Then pge,r € M, since T' € M.
Moreover, since the range of T is contained in K, we have

7-<1 - q) > T(I) - 7-(pKerT) =1~ 7-<pKerT>‘
Hence, by (2),
(4) T(pKerT) >1- 2k71€.

We have, by (3)
7-(pKerT> = T(plCﬂw(s)IC) + T(]- - Q>7
where pxrrsx € M is the orthogonal projection on K N7 (s)K. Now,
Knna(s)K c Kna(syH® = KNHW.

Since ¢ is the orthogonal projection on I N HOw , it follows in view of (2)
and (4) that

v

T(pICI"ITr(s )

= 7(Pkerr) — (1 = 7(q))
> (1—2F'le) —2Fle=1-2%.

7(qx)

This proves the claim (1) and finishes the proof of the lemma. H

Corollary 11 Under the assumption made at the beginning of this section,
there exists an irreducible representation my of the congruence quotient

SLn(Z)/T(N?) = SL,(Z/N?Z)

such that ¢ is the (normalized) character of my lifted to SL,(Z), where N is
as in Lemma 10.
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Proof By the previous lemma, the subspace KC of the common invariant
vectors under (), w(vY),...,m(y}) is non-zero. Let T' be the subgroup

of SL,(Z) generated by
{0

By [Tits76, Proposition 2], I' contains the congruence normal subgroup I'(N?).
Consider the subspace

HEW?) _ neH : m7(y)n=n for all € T(N?)},

of w(D(N?))-invariant vectors. Then HTN) #£ {0} since K ¢ H"¥). More-
over, H'™?) is invariant under 7(SL,(Z)), as [(N?) is normal in SL,(Z).
On the other hand, H'™*) is clearly invariant under p(S Ly, (Z)). It follows
that
HON) =K,

Hence, 7 factorizes through the finite group SL,,(Z)/T(N?). It follows that H
is finite-dimensional, that 7 is a equivalent to a multiple mmy of an irreducible
representation my of SL,(Z)/T(N?) with m = dim(7), and that ¢ is the
normalized character of 7.

6 Proof of Theorem 3: Second case

With the notation as in Section 4, we assume now that
H=H. for every copy V of Z" " in SL,(Z).
This is equivalent to:
ely = e for every copy V of Z" ' in SL,(Z).

Let x, be the unitary character of the centre C' = {+I} of SL,(Z) such
that

©(27) = xpo(2)p(y)for all 2z e C,v e SL,(Z).
We claim that
o) = 0 if ye SL,(Z)\ C
Xo(7) ifyeC.

The following proposition, which is of independent interest, will play a
crucial role.

17



Proposition 12 Every matrizy € SL,(7Z) is conjugate to the product g1g2gs
of three matrices of the form

1 % * % *
O ke * . : *
g1 = . GGl, go = ’ EGn
. * k k... ok
0 = * 00 0 1
and
1 00 0
* 1 0 0
g3 = : e
* 0 0 - 1
Proof

o First step: We first claim that v is conjugate to a matrix ~; with first
column of the form (*,0,*,0,...,0)". This is Lemma 1 in [Bren60]. The result
is proved by conjugating v by permutation matrices (with sign ajusted) and
by elementary matrices of the type e;; with 1 <i # j < n.

So, we can assume that the first column of 7 is of the form (%, 0,,0,...,0)*
for k,l € Z.

e Second step: There exists a matrix 7, € G, such that the first column of
vy is (k,1,1,0,...,0)" Indeed, since ged(k, 1) = 1, there exist p,q € Z such
that pk + ql = 1. We can take

100 --- 0

p 1 q - 0
= T : : € Gy

000 --- 1

e Third step: There exists a matrix v, € G% N G,, such that the first column
of voy17vis (1,1,1,0,...,0)". Indeed, we can take

1 1-k 0 --- 0
0 1 0O --- 0

12 = : : : : : € Gy
0 0 0 1

18



e Fourth step: There exists a matrix y3 € V; such that the first column of
Y3271y is (1,0,0,0,...,0)" Indeed, we can take

1 00 -~ 0
-1 10 0

Y3 = -1 01 0] ewn.
0o 00 - 1

By the last step, 74 = 1372717 € G. We have

Yayvet = va( e s

The claim follows, since ;75 € G, and 13 € V1. B

Remark 13 In the case n > 4, the previous proposition can be improved:
every 7 € SL,(Z) is conjugate to a product g1go € GYG,. Indeed, in this
case, the matrix 73 in the fourth step of the proof belongs to GG,, and hence

vvys = e st € GLGh.

Returning to the proof of Theorem 3, the previous proposition implies
that it suffices to show that

p(v)=0 for all e GYG,V, with ~¢C.

For this, several preliminary steps will be needed.
We will use several times the following elementary lemma.

Lemma 14 Let I be a group and (w,H) a unitary representation of I'. Let
v = (m(-)§, &) be an associated positive definite function such that v = J..
Then, for every sequence (gr)ren of pairwise distinct elements gp € I, the
sequence (m(gx)&)ken converges weakly to 0 in H.

Proof For k,l € N with k # [, we have

(m(ge),m(9)E) = (m(g; " gr)&,€)
= Y(g; 'gr) = 0.
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Therefore, (7(gx)€)ken is an orthonormal sequence in H and the claim follows.H

The first step in this part of the proof of Theorem 3 is to show that
o(y)=0 forall yeGiUG, with ~v¢C.

For elements x,y in a group, let [z, y] denote the commutator z 'y tzy.

Lemma 15 Let V be a copy of Z" in SL,(Z) and let G be the normalizer
of V. Then p(y) = 0 for every v € G\ C.

Proof Write
V=%t ®- P Lax,,

where x4, ..., x, are the elementary matrices contained in V.
Let v € G\ C. We claim that there exists i € {1,...,n} such that

w7 yak £ oyl forall k,l€Z, k#I.

Indeed, otherwise there would exist non-zero integers k; such that « is in the
centralizer of ¥ for all 4 € {1,...,n}. This would imply that v € C (see
Lemma 6).

The commutators [y, z¥] belong to V' and are pairwise distinct. Hence,
by Lemma 14, the sequence (m([y, 2¥])€)ren is weakly convergent to 0 in H.
For k € N, we have

I
S
)
= <
=

Hence,

as claimed. W

The next step is to show that
p(y)=0 forall y€GiG, with v ¢C.

Lemma 16 Let V,W be two copies of Z" in SL,(Z) with VN W # {0}.
Let G, H be the normalizers of V. and W, respectively. Lety = gh with g € G,
he€ H, andy ¢ C. Then () = 0.
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Proof Ifge Corh e C, theny € G or vy € H and then ¢(vy) = 0, by
Lemma 15. Hence, we can assume that g ¢ C' and h ¢ C.
Let x denote the elementary matrix such that

VW = (z).

It is readily verified that, for k € Z\ {0}, the centralizer of z* is contained
in G N H. Hence, we can assume that v does not belong to this centralizer,
that is, that the elements z *yz* are pairwise distinct.

We have
xR yah = xFgak e hat = g[g, 2* xR ha®,

Set yi, = [g, 2*]z"*ha*. Observe that V C G'N H. Since [g, 2] € V, we have
yr € H. Moreover, the elements y; are pairwise distinct, since

yp = g~ 'aFyak

Hence, again by Lemma 14, the sequence (m(yx)&)ren is weakly convergent
to 0 in H. As in the previous lemma, it follows that

p(y) = limp(x~"ya") = lim(r (y)¢, 7(g71)€) = 0. M

We will also need the following consequence of Lemma 16.

Lemma 17 Let V,W two copies of Z"' in SL,(Z) with V NW # {0}. Let
G, H be the normalizers of V' and W, respectively. Let (V)ren be a sequence
of pairwise distinct elements in GH. Then (m(7V,)€)ren converges weakly to 0

mn H.

Proof Observe that (m(7x)€)ken is a bounded sequence in H. Therefore,
it suffices to show that every subsequence (7(7y,)€)ien of (7(7k)€)ken has a
subsequence which weakly converges to 0.

For ¢ € N, write v, = gx, hx, for gy, € G and hy, € H.

Since C' is finite and since the elements 7, are pairwise distinct, we can
find a subsequence of (74,);, still denoted by (7, )i, such that Vi, Yy, ¢ C for
all © # j. It follows that

i, Gehuhy ¢ C forall i .
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From Lemma 16, we deduce that, for all i # 7,

(v ) = lhy, g, grlw,)
= o(g; grhwi o)
= 07

since gk_jlgki € G and hkih,;jl € H. As in the proof of Lemma 14, this shows
that (7(y,)€); weakly converges to 0.

We can now conclude the proof of Theorem 3. Let v € SL,(Z) \ C. We
want to show that ¢(v) = 0.

By Proposition 12, we can assume that v = g1¢g293 for matrices of the
form

1 x* * % *
0 % --- =% : %
g1 = . Gth, g2 = ’ GG(n
. k * ok e *
0 =* * 00 0 1
and
1 00 --- 0
a 1 0 --- 0
93 = R : : € Vi
a, 0 0 --- 1

If g3 € G, then 7 is a non-central element in G¢G,,, and it follows from
Lemma 16 that ¢(vy) = 0. We can therefore assume that g5 ¢ G, that is,

a, # 0.

Let x be the elementary matrix eg ,, thus

100 --- 0
010 --- 1
r=1. .
000 -1

Then z € GYNG,, and the centralizer of every power z* for k # 0 is contained
in G,,. Hence, if  is contained in the centralizer of some power z* for k # 0,
the claim follows from Lemma 15. We can therefore assume that

g Rygk £ 7 lygl for all k #1.
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We compute that

1 00 - 0

as+ka, 1 0 0

an, 0 0 1

Hence 2 *gs2* = a3, where

1 00 --- 0 1 00 --- 0
ka, 1 0 --- 0 as 1 0 0
a = 0 01 --- 0 and ﬁ: as 01 --- 0
0O 00 --- 1 a, 0 0 --- 1

Observe that ay € G, for every k. We have

gyt = a7 gigagaa®

= (a7 gia")(a  goa®) (27" gsa®)
= (¢7"g1a")(z 7 gax") .
Now, since # € GY N G,,, we have v %g2% € G! and v *ga*ay € G,,. Tt

follows that
e kb3l e GG, for every k.
Set
= Fyah g
Since ~ is not in the centralizer of z*, we have 7 # ~; for all k # . Hence,
by Lemma 17, the sequence (7(7x))ren converges weakly to 0. It follows that

p(y) = limp(Bz~ ya"5™)
= lime(B)
= lim(m(Bn)¢, &)

= lim(r(y)¢, 7(67)¢)
= 0.

This concludes the proof of Theorem 3.1
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7 Deducing Theorem 1 from Theorem 3

Let I' = SL,(Z) for n > 3. Let M be a finite factor, with trace 7, and let
m: ' - U(M) be a group homomorphism such that =(I')” = M. Then
@ = 1o is a character of I'.

Assume that M is finite dimensional. Let 7w, : I' — U(M,) be the fi-
nite factor representation associated to ¢ (see Section 2). The mapping
7o(y) — m(7y) extends to an isomorphism M, — M of von Neumann alge-
bras. Hence M, is finite dimensional and, by Theorem 3, ¢ is the character of
an irreducible finite dimensional representation of some congruence quotient
SL,(Z/NZ) for N > 1. It follows that 7 factorizes through SL, (Z/NZ).

Assume now that M is infinite dimensional. By Theorem 3, we have
¢ = X for a character x of the centre C. If n is odd, let A = I' and, if
n is even, let A = T'(IV) be a congruence subgroup for N > 3. Then A
has finite index in I' and AN C = {e}. We therefore have ¢|y = d.. The
GNS-representation of A corresponding to d. is the regular representation Aj
which generates the von Neumann algebra L(A). The mapping Ay (y) — 7(7)
extends to a normal homomorphism L(A) — M.

Remark 18 Observe that the conclusion in (ii) of Theorem 1 is that |
extends to L(A) and not just to U(L(A)). P. de la Harpe pointed out to
me that this is a stronger statement: a homomorphism U(M;) — U(Ma)
between the unitary groups of two finite factors My, My does not necessarily
extend to an algebra homomorphism M; — M,. As a simple example, take
M, = M5(C) and My = M,(C) = M,(C)®M;(C). The group homomorphism
m:U(2) - U(4),9 — g ® g does not extend to an algebra homomorphism

8 A question of Kirchberg

A conjecture of Kirchberg [Kirc93, Section 8, (B4)] is:

The full C*-algebra C*(SLy(Z) x SLs(Z)) of the direct product SLq(Z) X
SLy(Z) has a faithful tracial state.

As shown in [Kirc93], this problem is in fact equivalent to a series of out-
standing conjectures, among them the following one which was suggested by
Connes in [Conn76, page 105]:
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Every factor of type I, with separable predual is a subfactor of the
ultrapower R, of the hyperfinite factor R of type I1;.

A positive answer to the following question of Kirchberg [Kirc93, Remark 8.2]
would imply the conjecture above:

Does C*(SL4(Z)) have a faithful tracial state?

Indeed, SLy(Z) x SLy(Z) embedds as a subgroup of SL4(Z), for instance,
via the mapping

SLQ(Z) X SLQ(Z) > (’}/1,")/2) — <%1 /SQ) € SL4(Z)

A faithful tracial state on C*(SL4(Z)) would give, by restriction, a faithful
tracial state on C*(SLo(Z) x SLy(Z)).

We proceed to show that the answer to this question is negative. In fact,
the following stronger result will be proved. We will consider the copy

A= {(g ?) ye SLQ(Z)} ~ S1,(Z)

of SLy(Z) inside SL,(Z).

Corollary 19 Let n > 3 and set I' = SL,(Z). Let ¢ be a tracial state on
C*(T"). Then @|c=(a) is not faithful.

Proof Let 7 be the cyclic unitary representation of I' corresponding to ¢.
By Theorem 3, m decomposes as a direct sum

7700@@0'1‘,
7

where 7, is a multiple of the regular representation Ar, and where every
representation o; factorizes through some congruence quotient T'/T'(1V;).

Let Rep,,,(I') denote the set of all unitary representations of I' which
factorize through some congruence quotient. In fact, as a consequence of the
positive answer to the congruence subgroup problem, Repcong(F) coincides
with the set of all finite dimensional unitary representations of I' (see [Bekk99,
Proposition 2]). This implies (see, for instance, [Bekk99, Proposition 1]) that

ﬂ C* —Kero C C* — Ker Ar,

O'eRepcong (F)
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where C* — Ker o denotes the kernel in C*(I") of the extension of a unitary
representation o of I'.
We consider now the restriction 7| of 7 to A. Observe that

Repeong(A) = {c]n : 0 € Repeong(I') }-

Since C* — Ker \y = C* — Ker(Ar|p), we have

m C* —Kero C C* — Ker Ay,

UERepcong (A)

It follows from Selberg’s inequality A\; > 3/16 (see [Bekk99, Lemma 3))
and from the fact that SLs(Z) does not have Kazhdan’s Property (T) that
Repeong(A) does not separate the points of C*(A), that is,

ﬂ C* — Kero # {0}.

UERepcong (A)

Hence, we have

C* —Ker(m|p) = C"—Ker(me|a) N ﬂ C* — Ker(o;|a)
= C"—KerAy N[ )C* = Ker(oi]s)

O OC"—=KerAnN ﬂ C* —Kero
UERepcong (A)
= m C* —Kero

O'ERepcong (A)

and C* — Ker(m|y) # {0}. This clearly implies that |, is not faithful. W

Remark 20 The previous result does not hold for n = 2. Indeed, as was
shown in [Choi80, Corollary 9], C*(SLs(Z) has a faithful trace. In fact a
stronger result is proved in [Choi80, Theorem 7]: C*(SL2(Z) is residually
finite dimensional, that is, the finite dimensional representations of SLy(Z)
separate the points of C*(SLy(Z)).

It is shown in [LuSh04] that other interesting groups have a residually
finite dimensional full C*-algebra; this is, for instance, the case for funda-
mental groups of surfaces.

26



9 A remark on semi-finite traces

As mentioned in the introduction, it is conceivable that semi-finite, infinite
traces exist on C*(PSL,(Z)) for n > 3. The following result implies that no
such trace factorizes through the reduced C*-algebra C}(PSL,(Z)) for any
integer n > 2.

Proposition 21 Let G be a connected real semisimple Lie group without
compact factors and with trivial centre. Let I' be a Zariski-dense subgroup of
G. Then the tracial state 6. is, up to a scalar multiple, the unique semi-finite
trace on C¥(I"). In particular, C*(T') has no normal factor representation of
type 1.

Proof Let p: C*(T')* — [0, 00] be a semi-finite trace on the set of positive
elements of C¥(T).

We use an observation from [Rose89, page 583]. It is well-known that
there exist a non-zero two-sided ideal m, called the ideal of definition of ¢,
and a linear functional on m which coincides with ¢ on m* (see [Dix-C*,
Proposition 6.1.2]). Now, by [BeCH95], C*(T') is simple, that is, C*(I") has
no non-trivial two-sided (closed or non-closed) ideals. Hence, m = C(I") and
¢ is a finite trace. By [BeCH95], d. is the unique tracial state on C*(I") and
the claim follows.H

Examples of Zariski dense subgroups I' of a group G as in the previous
proposition include all lattices in GG. So Proposition 21 applies, for instance,
when I' = PSL,(Z) for n > 2 or when I' is the fundamental group of an
oriented compact surface of genus > 2.
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