Université de Rennes 1-Année 2024/2025 L3-PS-Feuille de TD 9

Exercice 1. Soit X une variable aléatoire continue de densité f, donnée pour tout $x \in \mathbf{R}$ par $f(x) = \frac{1}{2(1+|x|)^2}$. Pour $\alpha > 0$, soit $Y_{\alpha} = \alpha \ln(1+|X|)$.

- (i) Déterminer la densité de Y_{α} en fonction de α .
- (ii) Reconnaitre la loi de Y_{α} ; quelle est son espérance?

Exercice 2. Pour $a \in \mathbf{R}$, soit X une variable aléatoire continue de densité f, donnée pour tout $x \in \mathbf{R}$ par $f(x) = \frac{a}{x^4} \mathbf{1}_{[1,+\infty[}(x).$

- (i) Déterminer a.
- (ii) Calculer P(X = 0), $P(X \le 1)$, P(0 < X < 2) et P(X > 3).
- (iii) Calculer $\mathbf{E}(X)$ et Var(X).

Soit $x_0 > 0$ fixé. Pour tout x > 0, on pose $\varphi(x) = \mathbf{P}(X > x + x_0 | X > x)$.

(iv) Montrer que $x \mapsto \varphi(x)$ est une fonction croissante sur $]0, +\infty[$. Interpréter ce résultat quand X représente une durée de vie.

Exercice 3. Soit X une v.a.r. continue sur $(\Omega, \mathcal{F}, \mathbf{P})$ et f sa densité.

- (i) Montrer que e^X est une v.a.r. continue et calculer sa densité. Expliciter cette densité dans le cas où $X \sim \mathcal{N}(0,1)$.
- (ii) On suppose que X>0. Montrer que 1/X est une v.a.r. continue et calculer sa densité.
- (iii) Montrer que |X| est une v.a.r. continue et calculer sa densité.

Exercice 4. Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et $\Omega_1, \Omega_2 \in \mathcal{F}$ tels que $\Omega = \Omega_1 \cup \Omega_2, \ \Omega_1 \cap \Omega_2 = \emptyset$ et $\mathbf{P}(\Omega_1) = \mathbf{P}(\Omega_2)$. Pour $n \geq 1$, soit $X_{2n} = \mathbf{1}_{\Omega_1}$ et $X_{2n+1} = \mathbf{1}_{\Omega_2}$.

- (i) Déterminer la loi de X_n et en déduire que $X_n \stackrel{\mathcal{L}}{\to} X_1$.
- (ii) Calculer $\mathbf{P}(|X_{2n}-X_1|\geq 1)$ et en déduire que $(X_n)_n$ ne converge pas en probabilité vers X_1 .

Exercice 5. Une équipe de surveillance cherche à savoir si les huîtres d'un certain bassin ont été contaminées. Sur un échantillon de 200 huîtres, elle dénombre 32 huîtres atteintes. Déterminer un intervalle de confiance, au risque de 5%, pour la proportion d'huîtres contaminées dans le bassin.

Exercice 6. Une compagnie aérienne assure une liaison aérienne entre deux villes par un avion de 150 places. Des estimations ont montré que la probabilité pour qu'une personne confirme sa réservation est p=0.75. La compagnie vend n billets avec n>150 ("surbooking"). Soit X le nombre de personnes parmi les n possibles qui confirment leur réservation.

- (i) Quelle est la loi exacte de X.
- (ii) (*) Soit n le nombre de places que la compagnie peut vendre pour que, au risque de 5%, elle soit sûre que tout le monde puisse monter dans l'avion. Etablir une inégalité que doit satisfaire n; déterminer ensuite n. (Indication : On considérera que $Z = (X \mathbf{E}(X))/\sqrt{\mathrm{Var}(X)}$ suit approximativement une loi normale $\mathcal{N}(0,1)$ et on se rappelera que $\mathbf{P}(Z \leq 1.645) = 0.95$.)