Université de Rennes 1-Année 2023/2024

L3-PS-Feuille de TD 2

Exercice 1. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et A, B des évènements dans \mathcal{F} avec $\mathbf{P}(A) = 1/3$ et $\mathbf{P}(B) = 1/2$. Calculer $\mathbf{P}(A \cup B)$ dans chacun des cas suivants :

- (i) les évènements A et B sont incompatibles;
- (ii) l'évènement A implique l'évènement B;
- (iii) $P(A \cap B) = 1/6$.

Exercice 2. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et $(A_1, A_2, A_3) \in \mathcal{F}^3$. Exprimer les évènements suivants en fonction des évènements A_i et leurs probabilités en fonction des probabilités

$$p_i = \mathbf{P}(A_i), \ p_{ij} = \mathbf{P}(A_i \cap A_j), \ p_{123} = \mathbf{P}(A_1 \cap A_2 \cap A_3)$$
 pour tout $i \neq j$:

- (1) au moins l'un des évènements se réalise;
- (2) au moins deux des évènements se réalisent;
- (3) A_1 seul se réalise;
- (4) A_1 et A_2 se réalisent mais pas A_3 ;
- (5) deux évènements au plus se réalisent;
- (6) aucun des trois évènements ne se réalise.

Indication: on pourra utiliser la formule

$$\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C) - \mathbf{P}(A \cap B) - \mathbf{P}(A \cap C) - \mathbf{P}(B \cap C) + \mathbf{P}(A \cap B \cap C).$$

Exercice 3. (Limites supérieure et inférieure d'évènements) (*) Soit \mathcal{F} une tribu sur un ensemble Ω et $(A_n)_{n\in\mathbb{N}}$ une suite infinie d'évènements dans \mathcal{F} . La limite inférieure $\liminf A_n$ est l'ensemble des $\omega \in \Omega$ qui appartiennent à tous les A_n , à partir d'un certain rang. La limite supérieure $\limsup A_n$ est l'ensemble des $\omega \in \Omega$ qui appartiennent à A_n pour une infinité de $n \in \mathbb{N}$.

(i) Montrer que

$$\lim\inf A_n = \bigcup_{N \in \mathbf{N}} \bigcap_{n \ge N} A_n \qquad \text{et} \qquad \lim\sup A_n = \bigcap_{N \in \mathbf{N}} \bigcup_{n \ge N} A_n.$$

et en déduire que $\liminf A_n$ et $\limsup A_n$ appartiennent à \mathcal{F} .

- (ii) Montrer que $(\limsup A_n)^c = \liminf (A_n^c)$.
- (iii) Soient A, B deux parties appartenant à \mathcal{F} . On définit $A_{2n} = A$ et $A_{2n+1} = B$ pour tout $n \in \mathbb{N}$. Déterminer $\liminf A_n$ et $\limsup A_n$.
- (iv) Soit **P** une mesure de probabilité sur (Ω, \mathcal{F}) et $(A_n)_{n \in \mathbb{N}}$ une suite dans \mathcal{F} . Montrer que

$$\mathbf{P}(\liminf A_n) \leq \liminf \mathbf{P}(A_n)$$
 et $\limsup \mathbf{P}(A_n) \leq \mathbf{P}(\limsup A_n)$.

(v) Donner un exemple où les inégalités précédentes sont strictes.

Exercice 4. Un QCM comporte 10 questions, pour chacune desquelles 4 réponses sont proposées, dont une seule est exacte. Une personne décide d'y répondre au hasard. Combien y-a-t-il de grilles-réponses possibles? Proposer un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ qui modélise cette expérience aléatoire. Quelle est la probabilité qu'il y ait au moins 6 réponses correctes?

Exercice 5. Au loto, on tire six numéros entre 1 et 49, deux-à-deux distincts et sans tenir compte de leur ordre. Proposer un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ pour cette expérience aléatoire.

Calculez les probabilités des évènements suivants, pour $0 \le k \le 6$:

- «Avoir exactement k bons numéros »;
- « Avoir zéro, un ou deux bons numéros»;
- « Avoir au moins trois bons numéros ».

Exercice 6. (i) Combien de fois faut-il lancer un dé équilibré pour avoir au moins une chance sur deux d'obtenir un \ll six \gg ?

- (ii) Même question avec deux dés pour obtenir un « double-six ».
- (iii) Lequel des deux évènements suivant est le plus probable : « obtenir au moins un « six » en lançant 4 fois un dé » ou bien « obtenir au moins un « double-six » en lançant 24 fois une paire de dés »?