Université de Rennes 1-Année 2021/2022

L3—PRB/PSI1-Feuille de TD 6

Exercice 1. Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$ et soit $A \in \mathbf{F}$. Soit $\mathbf{1}_A$ la fonction indicatrice de A. Montrer que $\mathbf{1}_A$ est une v.a.r. sur Ω et calculer son espérance. Quelle est la loi de $\mathbf{1}_A$?

Exercice 2. Soit X un v.a.r suivant une loi géométrique $\mathcal{G}(p)$. Soit $\lambda \geq 0$. Montrer que la v.a.r. $e^{-\lambda X}$ possède une espérance et la calculer.

Exercice 3. Soient X et Y deux v.a.r indépendantes sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$ et suivant toutes deux une même loi géométrique $\mathcal{G}(p)$. Déterminer la loi de la v.a.r Z = X + Y.

Exercice 4. Soient X et Y deux v.a.r indépendantes sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$ et suivant des lois de Poisson de paramètres λ et μ . Déterminer la loi de la v.a.r Z = X + Y.

Exercice 5. On suppose que le nombre N d'enfants dans une famille suit une loi de Poisson de paramètre $\lambda > 0$. On suppose que les naissances sont indépendantes les unes des autres et qu'à chaque naissance, la probabilité que l'enfant soit une fille est $p \in]0,1[$. On note X la variable aléatoire correspondant au nombre de filles dans la famille.

- (i) Calculer P(N = n) pour $n \in \mathbb{N}$?
- (ii) Calculer P(X = k | N = n) pour des entiers naturels k et n.
- (iii) Déterminer la loi de X et la reconnaître; en déduire $\mathbb{E}(X)$.

Exercice 6. Soient X et Y deux v. a. r indépendantes suivant toutes les deux une loi de Bernoulli de paramètre p. On considère les v.a.r. S = X + Y et D = X - Y.

- (i) Déterminer les loi de S et D ainsi que leurs espérances et variances.
- (ii) Calculer $\mathbf{E}[SD]$.
- (iii) Les variables S et D sont-elles indépendantes?

Exercice 7. Soient a, b deux nombres réels avec $a \neq b, a \neq -b$ et $a, b \notin \{0, \pm 1\}$; soit X une v. a. r. de loi uniforme sur $\{-a, a, b, -b\}$ et $Y = X^2$.

- (i) Calculer les variances de X, Y et X + Y respectivement.
- (ii) Les v.a.r. X et Y sont-elles indépendantes?

Exercice 8. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et (X, Y) un couple de variables aléatoires avec $X(\Omega) = \{-1, 1\}, Y(\Omega) = \{1, 2\}$. On suppose que $\mathbf{P}(X = -1) = 1/4$ et $\mathbf{P}(Y = 1) = 1/3$. et on pose $p = \mathbf{P}(X = -1, Y = 1)$.

- (i) Exprimer en fonction de p la loi conjointe de X et Y et présenter le résultat sous forme d'un tableau.
- (ii) Quelles conditions doit-on imposer à p?
- (iii) Déterminer p pour que X et Y soient indépendantes.
- (iv) Calculer $\mathbb{E}(XY)$ quand p est comme dans (iii).

Exercice 9. Soient X et Y deux v.a.r à valeurs dans \mathbf{N} . On suppose qu'il existe $a \in \mathbf{R}$ tel que $\mathbf{P}(X=i,Y=j) = \frac{a}{i!j!}$ pour tout $(i,j) \in \mathbf{N}^2$.

- (i) Déterminer la valeur de a.
- (ii) Quelles sont les lois marginales de X et de Y?
- (iii) X et Y sont elles indépendantes?

Exercice 10. (*) Soient X et Y deux v.a.r indépendantes sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$ et suivant des lois géométriques de paramètres p_1 et p_2 . On considère la matrice aléatoire

$$A = \begin{pmatrix} X & 1 \\ 0 & Y \end{pmatrix},$$

c-à-d l'application $\Omega \to M_2(\mathbf{R})$ définie par $A(\omega) = \begin{pmatrix} X(\omega) & 1 \\ 0 & Y(\omega) \end{pmatrix}$ pour tout $\omega \in \Omega$.

- (i) Déterminer l'évènement "A est diagonalisable" en fonction de X et Y.
- (ii) Quelle est la probabilité que A soit diagonalisable?