Université de Rennes 1-Année 2021/2022 L3-PSIN/PRB-Feuille de TD 4

Exercice 1. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et A et B des évènements dans \mathcal{F} tels que $\mathbf{P}(A) > 0$, $\mathbf{P}(B) > 0$ et $A \cap B = \emptyset$.

- (i) Montrer que A et B ne sont pas indépendants.
- (ii) Montrer que A n'est pas indépendant avec lui-même.

Exercice 2. Une urne contient 12 boules numérotées de 1 à 12. On en tire une hasard et on considère les évènements :

A= «le numéro tiré est pair» et B= «le numéro tiré est un multiple de 3».

- (i) Les évènements A et B sont-ils indépendants?
- (ii) Répondre à la question (i) avec une urne contenant 13 boules.

Exercice 3. (*) Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé

- (i) Soient $A, B \in \mathcal{F}$ deux évènements indépendants. Montrer que A^c et B sont indépendants.
- (ii) Soient $A, B \in \mathcal{F}$ deux évènements indépendants. Montrer que A^c et B^c sont indépendants.
- (iii) Soient $A_1, \ldots, A_n \in \mathcal{F}$ des évènements mutuellement indépendants. Soit k avec $1 \le k \le n$. Montrer que, pour tout $0 \le i \le k$, on a

$$\mathbf{P}(A_1^c \cap \cdots \cap A_i^c \cap A_{i+1} \cap \cdots \cap A_k) = \mathbf{P}(A_1^c) \cdots \mathbf{P}(A_i^c) \mathbf{P}(A_{i+1}) \cdots \mathbf{P}(A_k).$$

(Indication : procéder par récurrence sur k.)

- (iv) Pour chaque i = 1, ..., n, soit $B_i = A_i$ ou $B_i = A_i^c$. Montrer que $B_1, ..., B_n \in \mathcal{F}$ sont des évènements mutuellement indépendants.
- (v) Soient $A_1, \ldots, A_n \in \mathcal{F}$ des évènements mutuellement indépendants. Montrer que la probabilité qu'aucun des A_i ne soit réalisé est inférieure à $\exp(-\sum_{i=1}^n \mathbf{P}(A_i))$. (Indication : utiliser l'inégalité $1-x \le e^{-x}$ pour tout x > 0.)
- Exercice 4. (*) Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et $(A_n)_{n\geq 1}$ une suite d'évènements dans \mathcal{F} . Pour la définition des évènements $\limsup A_n$ et $\liminf A_n$, voir feuille de TD 3.
- (i) On suppose que la série $\sum_{n\geq 1} \mathbf{P}(A_n)$ est convergente. Montrer que $\mathbf{P}(\limsup A_n) = 0$.
- (ii) On suppose que les évènements A_n sont mutuellement indépendants et que la série $\sum_{n\geq 1} \mathbf{P}(A_n)$ est divergente. Montrer que $\mathbf{P}(\liminf A_n^c) = 0$ et donc $\mathbf{P}(\limsup A_n) = 1$. (Indication : utiliser le point (v) de l'exercice précédent).
- Exercice 5. On dispose de trois urnes et de trois boules. On place chacune des boules au hasard dans l'une des urnes. Soit X la v.a.r égale au nombre d'urnes qui ne sont pas vides. Déterminer la loi de X.

Exercice 6. Un trousseau de n clefs contient une seule clef ouvrant une serrure donnée. On les essaie l'une après l'autre au hasard. Soit X la variable aléatoire égale au nombre d'essais nécessaires.

- (i) On essaie à chaque fois une clef au hasard sans avoir nécessairement écarté la précédente. Déterminer la loi de X.
- (ii) On essaie à chaque fois une clef au hasard après écarté la précédente. Déterminer la loi de X.

Exercice 7. Un joueur jette simultanément deux dés. A l'issue du jeu, il gagne une somme X égale à la différence entre le plus grand et le plus petit des points marqués.

- (i) Déterminer la loi de la v.a.r X ainsi que sa fonction de répartition F_X . Tracer le graphe de F_X .
- (ii) Calculer l'espérance et la variance de X.

Exercice 8. Soit $N \ge 1$ un entier. Une urne contient N boules numérotées de 1 à N. On effectue $n \ge 1$ tirages successifs avec remise. Soit X la v.a.r égale au plus grand des numéros obtenus.

Déterminer la fonction de répartition de X. En déduire la loi de X.

Exercice 9. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et $A, B \subset \mathcal{F}$ deux évènements. On considère la v.a.r. X sur Ω définie par $X(\omega) = 1$ si ω réalise un et un seul des évènements A ou B et $X(\omega) = 0$ sinon. On pose $p_1 = \mathbf{P}(A), p_2 = \mathbf{P}(B), p_3 = \mathbf{P}(A \cap B)$.

Déterminer la loi de X ainsi que son espérance et sa variance, en fonction de p_1, p_2, p_3 . En déduire les inégalités

$$\frac{p_1 + p_2 - 1}{2} \le p_3 \le \frac{p_1 + p_2}{2}.$$

et étudier les cas d'égalité.

Exercice 10. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et X une v.a.r. sur Ω à valeurs dans \mathbf{N} . On suppose qu'il existe $q \in]0,1[$ tel que

$$\mathbf{P}(X = n) = q\mathbf{P}(X \ge n)$$
 pour tout $n \in \mathbf{N}$.

Déterminer la loi de X.