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Abstract
We report new results on drainage and coarsening of aqueous foams. We
show that these two effects can strongly interfere, enhancing the drainage
velocity. Without coarsening, we have performed free-drainage experiments,
in which local drainage rates are measured by electrical conductivity and by
light scattering techniques. We have investigated the roles of the bubble size,
of the surface and bulk rheology and of the liquid fraction. The results show
that changing these foam parameters can induce transitions between different
drainage regimes. The results are analysed in terms of two dimensionless
numbers describing the balance between surface and bulk dissipation.

1. Introduction

Aqueous foams are dispersions of gas in liquid, stabilized by surfactant adsorbed at the air–
liquid interfaces [1]. If we look around us, aqueous or solid foams are ubiquitous in everyday
life (cosmetics, food, detergents, packaging etc). Beside the evident importance of their
applications, aqueous foams are also interesting to study as model systems of a new class of
materials called soft glassy materials, which include emulsions, slurries, pastes or granular
systems.

A main property of aqueous foams is that they are out-of-equilibrium systems. They
evolve in time by gravitational drainage, coarsening and film rupture [1]. Despite the fact
that the observation of this time evolution is quite easy, many questions remain unsolved on
the mechanisms of these instabilities, and still today no clear picture emerges about what sets
a foam lifetime. However, during recent years, this field has been very active, especially
regarding drainage, with advances both in theory and in experiments [2–25].

There are two experimental methods for the study of drainage. In the ‘free-drainage’
situation, a foam of initially uniform and constant wetness is allowed to drain: the foam dries
first at the top, and a dry front propagates down through the foam, while the liquid emerges
and accumulates at the bottom. Alternatively, in the ‘forced-drainage’ method, the surfactant
solution is poured onto the top of an already dried foam, and a wet front propagates down
through the foam.
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In both cases, in order to understand the properties of these macroscopic behaviours, one
needs to come to a more detailed description of the foam, at the scale of the bubbles. For
the drainage problem, one usually models the foam as a network of interconnected channels,
called the plateau borders (PBs), with the surfactant solution flowing along this network. These
PBs are connected in fours at vertices, or nodes. The drainage problem recalls the problem
of flow in porous media, but with the specificity that the PB cross section varies with the
liquid content: bubbles are deformable objects, and can be more or less packed depending
on the foam wetness. In a single PB, the gravitational force is balanced by capillarity (which
tends to bring the liquid from wet to dry zones), and by different viscous dissipation effects.
These dissipative effects and the balance between them are strongly connected to the boundary
conditions at the PB surfaces (more or less mobile). One of the major issues today in this field
is to understand what sets the boundary conditions (thus the flow regime), and how this varies
with the foam properties (bubble size, foam wetness, surfactant used and solution used). Also,
one has to understand the type of dissipation associated with the different boundary conditions
and macroscopic behaviours. The classical approach to the problem, being based on models
at the PB scale in order to predict the drainage behaviour at a much larger macroscopic scale,
relies on some basic assumptions which have to be tested, and the limits of such an approach
need to be investigated (especially for the case of very wet foams, where the PBs and nodes
are no longer well defined).

Another important issue is to elucidate the effect of the gas, which affects the coarsening
process. Foams coarsen because of pressure differences between bubbles of different sizes.
This results in an increase of the mean bubble size. Coarsening and drainage may interfere,
depending on the timescales of these two effects. Recent results have shown that coarsening
can enhance drainage, but some questions remain unsolved, especially about the dependence of
the coarsening rate on the liquid fraction, and about the mechanisms of drainage enhancement.

Despite its simplicity, free drainage is more difficult to analyse than forced drainage,
and such studies have not yet been able to produce comprehensive and reproducible sets of
results. It is important to note that the coupling with coarsening is not the only effect making
free-drainage experiments more difficult to perform and to interpret. The foam uniformity,
measurement methods and the treatment of the boundary conditions at the foam top and bottom
are also problems which need to be carefully handled in order to finally make the link between
free and forced drainage.

Clarifying all these issues, and understanding the effects of the foam basic constituents
and basic parameters (such as the bubble size, or the wetness) is indeed the first necessary
step for further studies of more complex foaming solutions, as well as for a good control and
understanding of foam rheology measurements.

In the first section of this paper, we present the different types of boundary condition at
the PB surfaces, and the related drainage regimes, discussed in terms of the balance between
surface and bulk viscous dissipation effects. Then we present our experimental approach
and the results of controlled free-drainage experiments showing how gas, bubble size, bulk
viscosity, surface rheology and wetness of the foam affect drainage, and induce drainage
regime transitions. We have focused our studies on small bubbles (with diameter D < 1 mm),
a relatively uncovered range of size in these studies. In the discussion section, we compile our
results with previous ones on larger bubble sizes, and try to answer some of the outstanding
issues presented above.

2. Boundary conditions and drainage regimes

A crucial point in the description of the flow in PBs is the treatment of the boundary conditions
at their surfaces. These surfaces can be immobile and rigid so that the flow in the PB is
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Poiseuille-like. Alternatively, the surfaces can also be more fluid and mobile, flowing with the
bulk liquid, and providing a plug flow in the PB. This surface mobility is indeed an important
property because two different macroscopic regimes of drainage are set by these two mobility
limits. Experimentally, these two drainage regimes have been seen for different surfactant
systems [2, 13, 26]. It has been shown that a transition from one regime to the other is
possible by changing the surface viscoelasticity via mixtures of surfactants [20, 22]. The
recent direct observation (via confocal microscopy) of the flow in a single PB has also shown
that, depending on the surface viscoelasticity, rigid or mobile surfaces could be found [27].
Changing the surface viscoelasticity can therefore induce the transition from one regime to
the other; it is important to understand whether other foam parameters can also control these
regimes and the surface mobility. In fact, this question is related to the understanding of
the dissipation mechanisms in the foam. In the case of immobile solid surfaces, the main
dissipative effect is a bulk one, related to the bulk viscosity of the solution. However, the PB
surfaces are viscoelastic, and one must always consider the coupling between the flow within
the PB and the flow in its surface (eventually providing surface dissipation). A first type of
surface dissipation is related to the transverse shear of the surfaces [28, 29]. Physically, the
shear comes from the triangular-like shape of the PB, inducing no speed in its corners, and
thus producing a shear within the surface.

The dimensionless number Ml

Ml = µr/µs (1)

describes the balance between this surface dissipation effect and the bulk viscous dissipation:
µ is the bulk viscosity, µs the surface shear viscosity and r the radius of curvature of the PB
(proportional to the bubble diameter D and to the liquid fraction ε, r∼ Dε1/2). Note that Ml

is the inverse of the Boussinesq number. The value of Ml sets the boundary conditions and
the flow type: when Ml < 1, Poiseuille flows are predicted, while for Ml > 1 plug flows are
predicted.

Durand et al [21] recently proposed another surface contribution, related to longitudinal
effects, and to the creation of surface tension gradients. The balance between bulk and surface
effects is then described by Md in the case of an insoluble surfactant:

Md = (µDs)/(Er) (2)

where Ds is a surface diffusion coefficient, and E is the Gibbs elasticity of the interface. For a
soluble surfactant, Ds has to be replaced by an effective diffusion coefficient Def f [21]. Here
also, plug flows are predicted when Md > 1.

One can see that if the surfaces are less elastic or viscous both Ml and Md increase,
providing transitions from Poiseuille flow to plug flow. Following these ideas, drainage
transitions should also be induced by other parameters (such as µ or r ), without changing
surface properties. However, note that the effects of the bubble size (via r ) are opposite in Ml

and Md .
Beside the surface effects, Koehler et al [13] also proposed to take into account the bulk

dissipation in the nodes, which could be the dominant effect for the case of mobile surfaces:
merging and bending of flows in the nodes can induce a bulk viscous dissipation, which no
longer exists in the PBs. In this case, however, it is impossible to describe the transition of the
drainage regime in terms of a simple parameter.

For immobile surfaces, the drainage equation was first derived by Weaire and co-
workers [2, 5], and independently by Gol’dfarb et al [26]. The associated flow regime can
be recognized in many ways whether it is in the free- or in the forced-drainage experimental
mode. In forced-drainage experiments, the liquid front speed v is related to the constant liquid
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flow rate Q via

v ∼ Qα with α = 1/2. (3)

In free drainage, we have focused on the time variation of the liquid fraction ε within a
foam at different heights, which follows power laws: ε(z) = tβ . The exponent β depends
on the parameter χ = z/z0(t0/t)1/2 [14] (z = 0 at the foam top). Here, t0 and z0 are the
typical time and length scales defined by t0 = Cγµ/2Kx(ρg)2 L3 and z0 = Cγ /2ρgL. C is
a constant, γ is the surface tension, ρ is the density, L is the PB length (L ∼ D/3) and Kx is
a dimensionless parameter depending on the drainage regime: K1 for rigid surfaces, and K1/2

for mobile ones [14]. Therefore, for this regime, one finds

ε ∼ t−2/3 for χ < 1, ε ∼ t−1 for χ > 1. (4)

For the other limit (mobile surfaces), it turns out that the drainage equation is identical
if one considers that bulk effects in the nodes or longitudinal surface effects in the PBs
dominate [13, 14, 21]. This equation provides for forced drainage

v ∼ Qα with α = 1/3 (5)

and for free drainage

ε ∼ t−1 for χ < 1, ε ∼ t−2 for χ > 1. (6)

For the case of the surface shear effect alone, no analytical calculation is available.
However, it seems, in the limit of mobile surfaces, that the drainage regime is different from
that found for the two other effects in this same limit (equations (5) and (6)). In fact, numerical
simulations show that one could take this effect into account by introducing an acceleration
ratio, which is a function of Ml , and which simply re-scales the coefficient K1 [28, 30]. In this
case, this should result in a regime close to that of rigid surfaces, with a slight increase of α

(up to 0.6), and slight decreases of the β coefficients. Note that this issue is not completely
clarified.

By varying the foam properties (bubble size, solution viscosity and surface rheology), and
by determining the conditions to obtain one regime or the other, we can expect to understand
what controls the surface mobility, and which dissipation mechanisms are acting.

3. Experiments: samples, methods and setup

In our experiments, foams are made by two different techniques. The first one is a turbulent
mixing method [17] which provides bubbles with an average size D(t = 0) = 180 µm. The
initial liquid fraction ε0 can be controlled and changed from 0.02 to 0.5. This fast production
device (1 l in 7–8 s) is crucial for creating large volumes of initially uniform and homogeneous
foams. The uniformity of the foam (meaning an initial liquid fraction constant at any height
in the foam) is an important requirement, since initial liquid gradients change the drainage
dynamics [17]. In the second method (bubbling method), gas is gently blown through a glass
frit into the liquid. This slowly creates the foam, so the foam drains during the production, and
the liquid fraction is not uniformly distributed along z. To obtain uniform foams, for the free-
drainage experiments, we re-wet the foams from the top, at different rates Q (providing different
ε0). Here, the bubbles have an average diameter D(t = 0) = 800 µm. The polydispersity
is similar in both cases, and remains reasonably small, with no extremely small or large
bubbles [17].

We have used two gases: N2 and C2F6. The fluorinated gas is highly insoluble in water,
and thus strongly reduces coarsening. The surfactant used is sodium dodecyl sulfate (SDS)
with or without dodecanol (DOH) (at a weight ratio SDS/DOH ∼250). With dodecanol, the



Time evolution of aqueous foams: drainage and coarsening 9401

0 5 10 15 20 25 30 35 40
0

2 104

4 104

6 104

8 104

z (cm)

time

C
(a

.u
)

Figure 1. Liquid fraction (proportional to the electrical conductivity) versus height, at different
times in the foam. The time between each measurement is �t = 3 min. z = 0 at the foam top,
D(t = 0) = 180 µm.

mixed monolayer at the surface is more elastic and viscous [31]. In some cases, we also have
increased the bulk viscosity by adding glycerol to the surfactant solution.

The easiest measurement in free-drainage experiments is the height L of liquid drained
out of the foam. This provides the drainage curves L(t), which can be normalized by the final
height obtained after complete drainage L f . Together with the drainage curves, we follow the
drainage dynamics by two complementary techniques. First, we use electrical conductimetry,
via a set of electrodes installed along the foam container. The setup is similar to that described
in [20, 22]. Locally, the liquid fraction ε is simply proportional to the electrical conductivity
C . We have measured that this linearity remains valid up to surprisingly high liquid fraction,
ε ∼ 0.25. Note that not all the questions on the electrical conductivity of foams are resolved
today, especially when one wants to obtain an absolute value of the liquid fraction from a single
measurement. Here, we use it only for relative variations, and this setup provides the liquid
fraction profile in the foam at any time (figure 1). In this graph, one can see that the foam
first dries at the top, then deeper in the foam. Note also the creation of a very wet zone near
the foam/liquid interface, due to capillarity (the foam locally reaches a high liquid fraction
∼ 0.35). At long times, not all the liquid drains out of the foam, and some liquid remains
within an equilibrium vertical profile set by the balance of capillary and gravity forces.

We also use a light scattering method, similar in its concept to that used in [23]. The
foam is uniformly illuminated on one side of a flat tall column (height 1 m, thickness 3 cm
and width 25 cm) and a CCD camera collects the transmitted light on the other side. For a
large enough foam thickness, the light is multiply scattered by the foam, and the transport
of photons becomes a diffusive phenomenon. The diffuse transmitted intensity It is then
proportional to l∗/L, where l∗ is the mean free path of light in the foam [32]. Using the
relationship, l∗/D ∼ ε−1/2 (valid for a large range of bubble size and liquid fraction) [33], one
can infer ε(t) from It , if D is a constant. However, if D is increasing with time by coarsening
or coalescence, the transmitted intensity increases both because D increases and ε decreases.
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Figure 2. Images in transmission of a foam at different ages: the wetter the foam, the darker the
image.

Thus, coupling the two methods on the same sample is an original way to obtain both ε(t) and
D(t), at any position in the foam. Figure 2 shows images of the foam at different ages: in
this multiple-scattering regime, the wetter the foam, the darker the picture. The same drainage
features as described in figure 1 are recovered here. For all the experiments shown in this
paper, the initial height of the foam is constant and is H ∼ 400 mm.

4. Results

4.1. Gas effects and drainage-coarsening coupling

In order to perform a well controlled free-drainage experiment, we have first investigated the
effect of coarsening on the drainage dynamics. It is known that coarsening enhances the
drainage [15, 18, 23]: basically, the bubbles becomes larger, making the PBs wider, thus
increasing the drainage speed. However, some questions remain unsolved both on foam
coarsening and on the drainage/coarsening coupling.

In dry foams (compacted bubbles), at constant liquid fraction, it has been shown that the
bubble size growth law is R(t) ∼ t1/2 (R is the bubble radius) [34]. This means that the growth
rate is simply a function of ε, with a coefficient G depending only on the gas properties:

R(t) ∼ t1/2 and R∂t R = G F(ε). (7)

This relation between R(t) and ε (via F(ε)) is the key point of the coupling, and the
exact form of this function is an important issue today [15, 23]. Also, it is important to know
whether the coarsening process depends only on the foam wetness and the gas properties, or
whether the adsorbed surfactants at the bubbles interfaces play a role. It seems that there is
no surfactant effect when the surfactants are small, but this remains to be tested for mixed and
complex polymer/surfactant layers or stacked protein layers. For very wet foams (separated
bubbles) the exponent of the growth law is one-third: another important issue is to understand
how and for which liquid fraction this exponent shifts to one-half.

Regarding the drainage/coarsening coupling, one can extract from equation (7) a typical
coarsening time:

τc = R2
0/2G F(ε). (8)
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(a)

(b)

Figure 3. Drainage curves for coarsening foams (N2) at different ε0, ranging from 0.04 to 0.3. The
arrows indicate the increase of ε0. D(t = 0) = 180 µm. (a) L/L f versus time; (b) L/L f versus
t − th , th being the holdup time.

Comparing tc with the typical drainage times td (one can use the time when half of the
liquid has drained out of the foam) is one way to quantify the importance of coarsening. When
tc � td there will be a strong drainage/coarsening coupling, and when tc � td the foam will
drain without coarsening. Note that td ∼ H/R2

0, so tc/td scales as R4
0/H , meaning that, beside

the gas property (G), the bubble size is also extremely important, as well as the experimental
conditions.

From direct observations, our foams made of very small bubbles (size D = 180 µm),
and of N2 gas, undergo strong coarsening: the bubbles grow by a factor of five to ten during
the drainage time. Figure 3(a) shows the normalized drainage curves for these foams, with ε0

ranging from 0.04 to 0.30. It first appears that the drainage dynamics hardly depend on the
foam wetness. The coarsening is more efficient for the initially drier foams, so it increases their
drainage speeds more than for the wettest foams, resulting in less difference between dry and
wet foams. Previous studies have shown that the wetness dependence completely disappears
for tall enough samples [17].
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Figure 4. Measurement at two different heights z. D(t = 0) = 180 µm. ε0 = 0.06. Light
scattering data (It ) treated as if D = const., and electrical conductimetry data (C).

Nevertheless, one can see that at short times there are still differences from ε0 (figure 3(b)).
Note that in this figure L(t) is plotted as a function of t − th , where th is the holdup time. This
is the time needed to build the capillary profile at the foam/liquid interface; before ε ∼ 0.35
at the interface no liquid can drain out of the foam. th is thus a decreasing function of ε0,
and here is non-zero only for the driest foams, for which th ∼ 100 s. For the driest foams, a
quadratic increase of L(t) is observed, in agreement with predictions for strong coarsening [15].
However, such a behaviour is very difficult to observe: we find that tc/td must be ∼0.15 to
start to see a quadratic increase (when one takes the effective drainage time for td ). Indeed, the
quadratic behaviour transforms into a linear one as ε0 increases, as predicted for small or no
coarsening. However, all these foams are still significantly coarsening, regarding the absolute
value of their drainage times.

So, it turns out that the observation of features due to coarsening in the shape of the L(t)
curves (so, in the drainage rates) are only found when the foam is strongly coarsening, whereas
significant decreases of the drainage time are already easily found with small coarsening. This
raises some questions on the actual mechanisms of the drainage/coarsening coupling: beside
the simple picture related to the bubble growth (equation (7)), other effects could increase the
drainage speed [23].

We show in figure 4 results on the local drainage of these N2 foams, obtained with our
setup coupling light scattering and electrical conductimetry. We treat the light scattering data
as if the bubble size were constant, and obtain what should be the liquid fraction curve. One
sees that the two sets of data separate very soon: this is the signature of the bubble growth. This
experimental approach appears to be very interesting for answering the previous questions on
both foam coarsening and drainage/coarsening coupling. One can have access to the bubble
growth behaviour at constant liquid fraction (first decay of the light scattering curve, when the
conductivity is still constant), and to the growth behaviour during variation of ε. Checking the
consistency of these two regimes should shed light on the coupling mechanism. Moreover, one
can also expect to study the stability of thin films: the bubble growth can also be due to film
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Figure 5. Normalized drainage curves. Comparison between the two gases. D(t = 0) = 180 µm.

rupture (bubble coalescence); without coarsening and at constant liquid fraction, this effect is
the only one acting on the light scattering data.

When C2F6 is used, there is almost no more coarsening for our bubbles of initial size
D = 180 µm. More precisely, we observe small coarsening, mainly just after foam formation
where the bubbles are the smallest: after 30 min, visual observations and light scattering show
that the mean bubble size has increased by only 20–25%. At longer times, the bubbles continue
to grow, but only slightly and more and more slowly.

Figure 5 shows that with this gas, the drainage times are indeed much longer, and that
differences appears with ε0: the drier the foam, the slower the drainage. Note also that the
holdup times become very long for the driest foams, and that linear behaviours are found in L(t).

Local measurements by light scattering and conductimetry show that the two curves are
close for the C2F6 foams, meaning no significant changes in the bubble size (figure 6). One can
see that the drainage rates are smaller than for the N2 foams, and that power law regimes are
found. Experiments where intermediate coarsening occurs (between the C2F6 and N2 foams)
confirm our previous results: it is much easier to change the drainage time (making it faster)
than to change the drainage rate (in terms of the exponent of the power law regime).

These experiments show that the gas used for the foam is indeed an important and
efficient parameter for changing the absolute drainage time. However, the efficiency of the
drainage/coarsening coupling depends also strongly on the bubble size, and is really significant
for small enough bubbles. Our results also show that coarsening affects the drainage rates only
in the very-strong-coarsening regime. We are therefore confident that, for our foams made of
C2F6 gas, the following free-drainage studies should not be affected by coarsening.

4.2. Bubble size D1 = 800 µm

4.2.1. Surface rheology. Figure 7(a) shows the drainage dynamics for SDS/DOH foams
(ε0 = 0.07) with bubble size D1 = 800 µm. At long enough times, power law behaviours
are observed with exponents β increasing from −2/3 to −1 as z increases. This change of β
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Figure 6. Local measurement. Comparison between the two gases. Circles with C2F6; triangles
with N2; D(t = 0) = 180 µm. ε0 = 0.08.

is due to the increase of χ with z: one can calculate that χ > 1 when z is larger than a few
centimetres, in agreement with what we found experimentally. Note that χ changes more with
z than with t . The exponents are therefore compatible with immobile surfaces, as expected for
these rather rigid surfaces (equation (4)). Also in agreement with the immobile surfaces, one
can see that near the top the scaling regime starts when ε/ε0 < 1/2.

The same experiments with pure SDS solutions (less elastic and viscous surfaces) provide
similar results, but with exponents ranging from −0.8 to −1.3. Thus, it appears that the
mobile surface regime (see equation (6)) cannot be fully reached with these bubbles (SDS was
recrystallized several times to ensure that no residual DOH was present). Forced-drainage
experiments with the same bubbles also show that the exponent α never goes below 0.40 for
pure SDS.

4.2.2. Bulk viscosity. We have tested the effect on the drainage regime of the bulk viscosity µ

for these foams of bubble size D1. In a previous study, we have shown that SDS/DOH foams
remain in the immobile-surface regime for viscosity µ up to ten times the viscosity of water
µwater [22]. Here, we show that with µ > 16 × µwater , a change of regime is observed:
in figure 8, far enough from the top, we find β ∼ −1.7, consistent with the mobile-surface
regime.

4.3. Bubble size D2 = 180 µm

4.3.1. Surface rheology. When we turned to the bubbles of size D2 = 180 µm, we found
results surprisingly consistent with the mobile-surface regime, for SDS and even for the
SDS/DOH solution (figure 7(b)). Scaling behaviours are found with exponents increasing
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Figure 7. Normalized liquid fraction versus time, at different heights in the foam. The arrow
indicates the direction from the top (z = 0) to the bottom. The first measurement is typically for
z = 1–2 cm, and the distance between each measurement is �z = 4 cm.

with z from −1.25 to −2. An exponent ∼ − 2 is found after a few centimetres; here
again, it is consistent with the variation of χ . Also, the scaling behaviour starts below
ε/ε0 ∼ 1/3, in agreement with the mobile-surface regime. Note that our interpretation arises
from observations all along the foam height: measurement at a single z could lead to misleading
conclusions, in view of the exponent z-dependence (equations (4) and (6)). Indeed, exponents
β = −1 can be found for mobile surfaces at small z, and for rigid surfaces at larger z. As
a final test to show that coarsening is not acting in these experiments, we also performed
forced-drainage experiments with bubbles of sizes D1 and D2 (figure 9). For an SDS/DOH
foam, we find α = 0.36 ± 0.01 with the small bubbles, whereas α = 0.50 ± 0.01 for the large
bubbles. Here, we are sure that there is almost no coarsening since the experimental time is
short (the front is followed for roughly 4 min) and a new foam is made before each different
measurement. These results fully confirm the free-drainage observations, and show that there
is a real effect of the bubble size. One can also see (figure 8) that the bubble size effect is
similar to the previously described viscosity effect.
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Figure 8. Normalized liquid fraction versus time, for different bulk viscosities and bubble sizes.
Starting from large bubbles, an increase of the viscosity or a decrease of the bubble size provides
the same effect, and the same change of power law.

Figure 9. Forced-drainage experiments: evidence of the bubble size effect on the drainage regime.

Note that our findings are also consistent with the recent drainage study of coarsening
foams of small bubbles [23], and that we can deduce from our experiments a similar value
of K1/2 ∼ 0.009. As noticed in [23], this value, which should be a constant, is surprisingly
3.5 times larger than found in [14] for bubbles of a few millimetres size.
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Figure 10. Liquid fraction (arbitrary units) versus time, for different initial foam wetnesses.
D(t = 0) = 180 µm.

We can also add that preliminary results with protein solutions (providing extremely rigid
surfaces) show that the rigid surface regime can be recovered for these small bubbles (in spite
of a similar amount of coarsening). It is finally interesting to remark that once the experimental
conditions are well controlled (uniform foam, no coarsening), the two experimental modes—
forced and free drainage—provide the same results. Free drainage appears to be even simpler
since all the measurements can be made during the drainage of a single foam, whereas forced
drainage implies many different front propagations to obtain the same information.

4.3.2. High wetness. We have also investigated the limit of wet foams. All the results
presented before were for foams with ε0 between 0.04 and 0.10. For very-high-liquid-fraction
foams (ε > 0.15−0.20), forced drainage cannot be studied because of front instabilities [6, 35].
Thanks to our foam production apparatus, we can create and study free drainage of such wet
foams (figure 10). Close to the foam top, a power law with β ∼ −2 is seen, evolving towards
−1 as the liquid fraction becomes smaller. Away from the top, β can reach −3 for the wettest
foams. Nevertheless, at very long times, as χ becomes smaller than unity, an exponent −1 is
recovered as expected.

The behaviour of these high-ε foams does not fit with any predictions. This may be due
to the inadequacy of the models, based on the existence of well defined PBs: the repartition
of liquid between the PBs and the nodes changes as ε increases, as well as their relative
size. Moreover, coarsening effects could also have to be taken into account in these data.
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For the previous drier foams, coarsening (small but still present) is mainly active at short
times, because the foam is initially already dry enough to coarsen. So, within the power law
regime, the bubbles are almost no longer growing. In contrast, for the wettest foams, almost
no coarsening occurs as long as ε is large, and the foams mainly coarsen at longer foam ages
than the dry foams, principally during the time where one sees the high-exponent power laws.
However, as stated before, a small coarsening, as seen here, cannot change the drainage rates
so much. Thus, the drainage behaviour of the very wet foams remains puzzling, and still has
to be understood.

5. Discussion

Putting these new results together with previous ones allows us to test the different mobility
parameters. Koehler et al [14, 27] have found direct evidence of plug flow regimes for
SDS solutions, and Poiseuille flow regimes for protein solutions, with bubble sizes of a few
millimetres. Preliminary results in our group with such large bubbles provide the same results:
a plug flow drainage type is easily found, even with dodecanol added to SDS. From the flow
profile in a PB, they have extracted values of Ml in both cases: Ml ∼ 2 for SDS solutions
(corresponding to a SDS surface viscosity of µs = 3.6 × 10−5 g s−1), and Ml < 1 for protein
solutions (µs = 2×10−2 g s−1). Ml therefore appears to be a good parameter for describing the
mobility of the interface, at these bubble sizes. Following this picture, with the same surface
viscosity, it turns out that Ml is slightly smaller than unity for our 800 µm SDS bubbles. This
can explain why we never reach a pure mobile surface regime for this bubble size.

In this interpretation, in order to explain the observed power laws for mobile surfaces
(Ml > 1), one must consider that the mobile-surface regime is associated with the mechanism
of dissipation in the nodes, since the dissipation in the surface alone probably cannot explain
these scalings. We therefore come up with the following picture for the large bubble sizes:
the balance between surface shear and bulk dissipation controls the boundary conditions at the
surface and the surface mobility; but once the surfaces are mobile, the nodes finally control
the macroscopic drainage regime.

The bulk viscosity effect that we have observed can also be explained within the same
argument: since it is necessary to increase the bulk viscosity by roughly a factor of 20 to reach
the fluid regime for the SDS/DOH foams, a similar ratio should exist for the surface viscosities
between SDS and SDS/DOH, which seems reasonable [31].

However, the Ml argument cannot explain our observations for the very small bubbles. For
the D2 bubbles, Ml is always �1. Nevertheless, the other surface effect, related to Md ∼ 1/r ,
allows the flow in PBs to become pluglike for small bubbles. Unfortunately, the numerical value
of Md is too small to account for the transition. Some hypotheses, simplifications or numerical
estimations made in [21] (lubrication limit, linearized equations) are probably inadequate. The
implementation of this model is an ongoing work. Nevertheless, in such an explanation for the
small-bubble behaviour, dissipation in the nodes is not needed, and the specific longitudinal
surface dissipation alone can explain the observed power laws. Again, it is important to remark
that the bulk viscosity effect could also be explained with the Md argument.

Since the mobile-surface regimes seen for the very small and the very large bubbles do not
have the same origin, there are no reasons why K1/2 should be the same in these two cases (K1/2

is in fact a measure of the drainage velocity normalized by the bubble size, in the mobile-surface
regime). This is in agreement with our measurement of K1/2, which is different for the small
bubbles compared with those of millimetre sizes. Moreover, the small K1/2 value (∼0.003)
found for the large bubbles agrees well with viscous dissipation being larger in the nodes than
in the PBs, as K1/2 < K1 ∼ 0.007 [14]. This is no longer valid for the high K1/2 value found
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for the small bubbles, and this shows that the node contribution is definitively too small in this
regime, and that all effects originate from the PBs. In order to better understand these quan-
titative issues on K1/2 and to fully validate the above explanations, we are now investigating
in detail the bubble size dependence of the drainage velocity. Preliminary results shows that
K1/2 continuously decreases with increasing bubble size, but the curve shows different slopes
for small and large bubbles and a kink around D ∼ 1 mm, precisely where one can expect the
crossover between the different mechanisms associated with the mobile-surface regime.

Previous and new results can thus be interpreted (at least qualitatively) and compiled in the
framework of two drainage type transitions,with two parameters Ml and Md , related to different
surface dissipation effects, and acting at different length scales. Different experimentally
relevant situations can be described. For a moderate surface viscosity (SDS/DOH solution),
one can have a change from plug flow to Poiseuille flow regimes, and back again to plug flow,
as one decreases the bubble size. For very small or very large bubbles, surfaces have to be
extremely rigid to provide Poiseuille flow within the PBs. Pure SDS solutions would almost
always give a plug flow regime, but with a range of intermediate sizes where it is less marked.
Note that these changes of regimes are also driven by the bulk viscosity.

6. Conclusion

The new results presented here show that foam drainage is complex, and depends on many
parameters, related to the constituents (gas, liquid and surfactant) and to the foam sample
(bubble size, wetness and height). Our investigation shows how these parameters act both on
how fast the liquid drains, and—less obviously—on how it drains, with the existence of two
types of drainage. We have shown that there are transitions between these regimes, in relation
with the boundary conditions at the surface of the PBs. It turns out that changing (1) surface
rheology, (2) bulk viscosity, (3) bubble size or (4) liquid fraction can induce changes,not simply
in the drainage speed, but also in the PBs’ type of flow, and thus in the macroscopic drainage
type. All these effects can be compiled in terms of two complementary dimensionless numbers
Ml and Md , describing the coupling between bulk and surface flows, setting the mobility of the
PB surfaces and acting at different length scales. Using these two numbers, one can predict the
type of drainage occurring in the foam, and reconcile many previous results. We also proposed
a complete picture including the effect of the nodes, which appears to be coupled with the shear
dissipation in the PB surfaces, and only important for the large bubbles (in agreement with
quantitative results).

Beside these results, our setup combining for the first time electrical conductimetry and a
multiple light scattering technique has allowed us to evidence the coupling between drainage
and coarsening, and to show how strong this coupling can be in terms of drainage times, rather
than in drainage rates. We have also shown that the free drainage approach can be as fruitful
as forced drainage, as soon as coarsening is ruled out, and when the evolution of the liquid
content is followed all along the foam sample. Within this free-drainage approach, we have
also been able to study the case of very wet foams (impossible in forced-drainage experiments)
and shown that new unexplained behaviours are found.

However, even if we understand now much better all these foam instabilities, there are
still questions and problems: about the actual value of Md , about the drainage of wet foams
(in relation with the effective role of the nodes), about a detailed description of coarsening
and of its coupling with drainage, about the balance between surface dissipation and node
dissipation when Ml > 1 and also about the other mechanisms of liquid transport (such as
the convective instabilities). Further work is thus needed to obtain a complete picture of foam
drainage and foam stability.
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